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Abstract One obvious feature of the solar cycle is its variation from one cycle
to another. In this article, we review the dynamo models for the long-term varia-
tions of the solar cycle. By long-term variations, we mean the cycle modulations
beyond the 11-year periodicity and these include, the Gnevyshev-Ohl/Even-Odd
rule, grand minima, grand maxima, Gleissberg cycle, and Suess cycles. After a
brief review of the observed data, we present the dynamo models for the solar cy-
cle. By carefully analyzing the dynamo models and the observed data, we identify
the following broad causes for the modulation: (i) magnetic feedback on the flow,
(ii) stochastic forcing, and (iii) time delays in various processes of the dynamo.
To demonstrate each of these causes, we present the results from some illustrative
models for the cycle modulations and discuss their strengths and weakness. We
also discuss a few critical issues and their current trends. The article ends with
a discussion of our current state of ignorance about comparing detailed features
of the magnetic cycle and the large-scale velocity from the dynamo models with
robust observations.
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1 Introduction

The most prominent and fundamental feature of the solar magnetic field is its 11-
year cyclic oscillation. Systematic observations of the large-scale solar magnetic
field, available since the 1950s, revealed the reversals of the field. However, the
times of the reversals and the strength of the field are not the same for all the
cycles. Time series of sunspot number and the sunspot area, for which we have
direct observations for longer durations (group sunspot number since 1610 and the
area since 1874), also show cycle-to-cycle variations (Hathaway 2015); Figure 1.
Thus, there is no doubt that the 11-year solar cycle is not regular and that makes
the prediction of the future cycle a formidable task (Petrovay 2020). The predic-
tion, however, is essential as the Sun’s magnetic field drives the space weather
which sometimes poses serious problems to us (e.g., by damaging satellite’s elec-
tronics, modern-day technologies such as telecommunications, GPS networks, and
electric power grids at high latitudes, making polar routes dangerous for aviation,
increasing the radiation dose to astronauts in space); Temmer (2021). Evidence
suggests that the variable solar activity may also drive changes in the Earth’s
global temperature (Solanki et al. 2013).

Simply saying that the solar cycle is irregular is not enough to describe its
true nature; there are many distinct features—such as grand minima and grand
maxima—which can be considered as extreme examples of irregularity; Figure 2.
Additionally, there are some long-term patterns beyond the usual 11-year varia-
tion, such as Gnevyshev–Ohl Rule and Gleissberg cycle. Below we briefly discuss
these long-term variations. However, the readers can check the excellent reviews
(Hathaway 2010, 2015; Usoskin 2017, 2023; Biswas et al. 2023) for extensive dis-
cussion.
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2 Long-term variations of the solar cycle

2.1 Grand minima and maxima

Grand minima are the extended episodes of considerably lower magnetic activity
than the normal one. The best example of these is the Maunder minimum in
the 17th century when solar activity was considerably weaker than the normal
one for about 70 years (Eddy 1976); Figure 1. We emphasize that this is not an
artifact due to few observations but a real and well-observed event (Hoyt and
Schatten 1996). Observations have shown that the Maunder minimum was not
complete lack of activity—the Sun was still producing spots and even cycles but
at a lower rate (Beer et al. 1998; Zolotova and Ponyavin 2015; Usoskin et al.
2015; Vaquero et al. 2015; Zolotova and Ponyavin 2016). This makes the Maunder
minimum (and possibly all grand minima) a special state of solar activity. Further
distinct aspects of Maunder minimum are the followings. (i) There was a strong
hemispheric asymmetry during the latter half of Maunder minimum; sunspots
were observed mostly in the southern hemisphere (Ribes and Nesme-Ribes 1993).
(ii) Recovery of Maunder minimum is gradual, however, the onset is somewhat
uncertain (Figure 1). Some previous results suggested that the onset is abrupt
(Usoskin et al. 2000), while later studies showed that it is likely to be gradual
(Vaquero et al. 2011). (iii) A proxy of solar activity inferred from a cosmogenic
isotope 14C showed that the cycle length before the onset of the Maunder minimum
was significantly longer than its usual value (Miyahara et al. 2021; Usoskin et al.
2021).

Analyses of 14C for the last 11,400 years revealed the following important
results (Usoskin et al. 2007; Usoskin 2017; Usoskin et al. 2021). (i) The Sun spent
about 17% of its time in the grand minimum state. (ii) Grand minima are of two
types: short minima of Maunder type with duration 30–90 years and long (> 100
years) minima of Spörer type. (iii) The grand minima recur aperiodically. (iv) The
waiting time distribution of the occurrence of grand minima displays a deviation
from an exponential distribution. However, Moss et al. (2008) showed that feature
(iv) can be an artifact of poor statistics (it is based on only 27 grand minima
identified in the observed data).

Grand maxima, on the other hand, are extended periods with appreciably
higher magnetic activity than the normal one. The modern maximum that oc-
curred around 1960 is an example of the same. In about last 11,000 years, 23
grand maxima were detected and the Sun spent about 12% of its time in this
phase (Usoskin et al. 2007; Usoskin 2017). Grand maxima are more short-lived
than the grand minima (Solanki et al. 2004; Usoskin et al. 2021). The distribution
of the duration of grand maxima shows a smooth variation with an exponential fall
at longer durations. The distribution of the waiting time between the consecutive
grand maxima is not conclusive but there is an indication of deviation from the
exponential law.

2.2 Cycles and modulations beyond 11 years

Beyond the regular 11-year solar cycle, the following longer cycles or modulations
are detected in the solar activity data.
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Fig. 1 Yearly variation of the monthly mean sunspot number smoothed using a Gaussian
filter of FWHM = 7 months (red curve), available since 1749 and the yearly mean group
sunspot number (black curve) available during 1610–2015. Note that group number is scaled
by a factor of 18 to bring it to the scale of sunspot number. The blue curve with 98-year period
guides the Gleissberg cycle. Cycle numbers for which the Even-Odd effect is obeyed are shown
by tagging the number on the odd cycles. Data source: WDC-SILSO, Royal Observatory of
Belgium, Brussels.
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Fig. 2 Reconstructed (decadal) sunspot number along with its 68% confidence interval (gray
shading) over nine millennia derived from 14C data using a multi-proxy Bayesian method by
Wu et al. (2018). The red curve shows the decadally resampled international sunspot number
for the last 300 years (version 2, scaled by 0.6). The dashed line marks the zero spot number.
Asterisks and circles mark the times of occurrences of grand maxima and minima, respectively.

– Gnevyshev–Ohl Rule/Even-Odd effect: This says that if the cycles are arranged
in pairs with the even cycle and the following odd cycle, then the sum of the
sunspot number in the odd cycle is higher than the even cycle (Gnevyshev and
Ohl 1948). We note that this is not a strict rule, it is violated in cycle pairs:
4–5, and 22–23 (Hathaway 2015).

– Gleissberg cycle: a modulation in the solar activity with a mean period of
about 90 years (Gleissberg 1939; Hathaway 2015). Recent data shows that a
sinusoidal fit to the detrended amplitude gives an approximate period of 98
years as shown in Figure 1; also see Forgács-Dajka et al. (2004) who found
somewhat closer value (104 years) in the area-weighted sunspot group data.

– Suess/de Vries cycle: Cycle with a period of 205–210 years detected in the
cosmogenic isotopes (Suess 1980).

Some other cycles like the millennial Eddy cycle and 2400-year Hallstatt cycle are
also noticed in the cosmogenic isotope, however, their signals are poor and require
longer data to confirm (Usoskin 2017).

We would like to mention that not only the solar cycle is irregular, but the
magnetic cycles that are observed in other sun-like stars are also irregular (Boro
Saikia et al. 2018; Garg et al. 2019). Analyzing the data of 111 stars of spectral
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type F2–M2, Baliunas et al. (1995) showed that the slowly rotating (old) stars
show a smoother variability in the magnetic cycle and possibly occasional grand
minima, whereas the rapidly rotating young stars show irregular activity and no
grand minima. Recently, Shah et al. (2018) and Baum et al. (2022) claim that HD
4915 and HD 166620 are possibly entering into the grand minimum phase. Hence,
stellar cycles are also interesting in terms of their modulations.

Now we shall come to the models for these long-term variations of solar ac-
tivity. By models in this article, we mean the dynamo models that are used to
explain the long-term variations of solar activity. Below we first present an in-
troductory discussion of the solar dynamo (Section 3) and models (Section 4).
Then we identify the causes of the long-term modulations (Section 5), followed by
some illustrative models for the same (Sections 6 and 7). Finally, we discuss a few
open questions with current trends (Section 8) and end the article with concluding
remarks (Section 9).

3 Solar dynamo: An overview

Dynamo is a process in which a sufficiently strong and complex plasma flow main-
tains a magnetic field by overcoming its Ohmic dissipation. The magnetic fields
that give rise to sunspots, global dipole magnetic field, and 11-year cycle are essen-
tially of the large-scale (global) type which usually requires a non-zero net helicity
(mirror asymmetry) in the flow. Due to the global rotation, the convective mo-
tion of plasma in the Sun is helical and the rotation is differential (nonuniform).
Through this helical flow, the poloidal field in the Sun is primarily generated from
the toroidal field, while the poloidal field acts as a source for the toroidal field
through the differential rotation (Parker 1955a). Thus, the solar dynamo is essen-
tially a cyclic oscillation between two fields and the turbulent transport plays an
essential role in this oscillation (Section 4). For a detailed discussion of the solar
dynamo, we refer the readers to the comprehensive reviews by Ossendrijver (2003)
and Charbonneau (2005b, 2010, 2020).

To study the solar dynamo, we need to begin with at least two basic equations
of the magnetohydrodynamics, namely,

∂B

∂t
= ∇× (v ×B − η∇×B), (1)

ρ
[
∂v

∂t
+ (v ·∇)v

]
= −∇P + J ×B +∇ · (2νρS) + F , (2)

where B and v are the magnetic and velocity fields, respectively, η is the magnetic
diffusivity, ρ is the density, P is the pressure, J = ∇×B/µ0, the current density,
ν is the kinematic viscosity, Sij =

1
2 (∇ivj +∇jvi)− 1

3δij∇ · v is the rate-of-strain
tensor and the term F includes gravitational, Coriolis and any other body forces
acting on the fluid.

The above equations must be solved along with the mass continuity, internal
energy and equation of state in the solar CZ with appropriate boundary conditions.
This approach to studying the solar dynamo—so-called global MHD simulations—
was pioneered by Gilman (1983) and Glatzmaier (1984) in the 1980s. While these
simulations gave a few positive results (e.g., large-scale flows and field and a bit of
polarity reversal), being computationally expensive, these simulations were hardly
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applied to explore the long-term variations of the solar cycle. Further, the appli-
cability of these simulations in the Sun is questionable due to their operation in a
completely different parameter regime. In recent years, however, we have got some
encouraging results in the global MHD simulations, a few of them were run for
several magnetic cycles to explore the cycle modulations. In Section 7, we shall
discuss the modulations of cycles found in these simulations. Probably the biggest
problem in these simulations is to explore and understand the cause of solar cycle
variabilities. In fact, often an equivalent mean-field model is set up to identify dy-
namics of the magnetic field in these global MHD simulations. On the other hand,
the mean-field models have been extensively employed in the past to explore the
cause of solar cycle variability. Therefore, below we shall consult the mean-field
version of the above equations to identify various mechanisms that can possibly
lead to cycle modulations.

Writing the magnetic and velocity fields in terms of mean/large-scale and
fluctuating/small-scale parts and applying suitable approximations in equations (1)
and (2), one can obtain the following equations (Krause and Rädler 1980).

∂B

∂t
= ∇× (v ×B + E), (3)

ρ
[
∂v

∂t
+ (v ·∇)v

]
= −∇P + J ×B + J ′ ×B′ −∇ · ρQ+ F , (4)

where the quantities with overline and prime respectively denote the mean and
fluctuating components. The mean electromotive force E is given by

E = v′ ×B′. (5)

In the mean-field theory, this E is written in terms of the mean magnetic field in
some limiting case (which holds at small Strouhal and magnetic Reynolds numbers)
as follows.

Ei = α̂ijBj + η̂ijk
∂Bj

∂xk
, (6)

Some components of α̂ tensor give the dynamo action and some of the components
of η̂ tensor are responsible for the diffusion of fields. For homogeneous and isotropic
turbulence, one can show that

E = αB − ηt(∇×B), (7)

where α = −1
3τcorr(v

′ ·∇× v′− (ρµ0)
−1B′ ·∇×B′) and ηt ≈ 1

3τcorrv
′ · v′. In the

classical αΩ dynamo model, this α coefficient is the one which is responsible for
the generation of the poloidal magnetic field from the toroidal one (Parker 1955a;
Steenbeck et al. 1966). The turbulent diffusivity ηt is several orders of magnitude
larger than the molecular η and that is the reason we have dropped out the η term
in Equation (3).

If the turbulence is inhomogeneous, then there will be an additional term γ ×
B in the above E. This γ is the magnetic pumping which is usually ignored in
most of the kinematic mean-field dynamo models, but found to be important
in the solar dynamo (e.g., Guerrero and de Gouveia Dal Pino 2008; Karak and
Nandy 2012; Kitchatinov and Olemskoy 2012; Cameron et al. 2012; Karak and
Cameron 2016; Karak and Miesch 2017) and has also been detected in global
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convection simulations (Racine et al. 2011; Augustson et al. 2015; Simard et al.
2016; Warnecke et al. 2018).

The value ofQ in Equation (4) can be written in terms of Reynolds and Maxwell
stresses as

Qij = v′iv
′
j − (ρµ0)

−1B′
iB

′
j = Q

λ
ij −Nijkl

∂vk
∂xl

, (8)

where the tensor N gives the turbulent viscosity νt. While N is rotation dependent
and has a complex form, it has two simple terms in the case of isotropic turbulence.
Again like ηt, νt is usually much larger than the molecular viscosity (ν) and thus
the latter is neglected in Equation (4).

The term Q
λ
ij is called the Λ effect which drives angular momentum in the

rotating CZ (Kippenhahn 1963; Ruediger 1989; Kichatinov and Rudiger 1993) to
give rise to the differential rotation. While the second term in Equation (8) tends

to smooth out the nonuniformity in rotation, Q
λ
ij makes the rotation nonuniform.

4 Some historical developments of the dynamo models

4.1 Axisymmetric kinematic dynamo equations

Despite tremendous contribution to the field, the pioneering simulations of Gilman
(1983) and Glatzmaier (1984, 1985) were discouraging for the dynamo modellers
as they failed to reproduce most of the basic features of the solar magnetic field.
Due to this failure, the dynamo modellers paid more attention to the mean-field
models to study the solar cycle. Motivated by the observed large-scale magnetic
and velocity fields, the coronal structure, and to make calculations simple, his-
torically the mean-field solar dynamo was mostly studied under the axisymmetric
approximation. With this approximation, the large-scale magnetic field can be
written as

B(r, θ, t) = Bp +Bt = ∇×
[
A(r, θ, t)ϕ̂

]
+B(r, θ, t)ϕ̂, (9)

where Bp = Br(r, θ, t)r̂ + Bθ(r, θ, t)θ̂ is the poloidal component of the magnetic
field and Bt = B(r, θ, t)ϕ̂ is the toroidal component. Similarly, the velocity can be
written as

v(r, θ) = vm(r, θ) + vϕ(r, θ)ϕ̂ = vr(r, θ)r̂ + vθ(r, θ)θ̂ + r sin θΩ(r, θ)ϕ̂, (10)

where vm = vr(r, θ)r̂ + vθ(r, θ)θ̂ is the meridional circulation and Ω(r, θ) is the
angular frequency.

We note that here we have taken the velocity as the time-independent (steady),
which is the case when we make the kinematic approximation. The kinematic ap-
proach has been adopted extensively in the literature to study the solar dynamo
because in this case, we do not have to consider the equation for the flow (Equa-
tion (4)) and thus it makes the dynamo problem linear (see equations (11) and (12)
below) and thus simpler. Nevertheless, observations provide us with the azimuthal
flow in the whole CZ and the meridional flow in the near-surface layer. Given the
fact that the differential rotation shows a little variation (in the form of torsional
oscillation), one would expect that the kinematic approach is not a bad assumption
for the sun.
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Fig. 3 Demonstration of Babcock–Leighton process. Decay and dispersal of two BMRs de-
posited symmetrically at 25◦ are shown for three years. Note that due to finite tilts (≈ 14◦

as assigned by Joy’s law) of the BMRs, a net poloidal field near the pole is produced (see the
weak field near the pole in the last snapshot). Snapshots are taken from a 3D model (Karak
and Miesch 2018) in which meridional flow (poleward on the surface), differential rotation (fast
equator) and a turbulent diffusivity of 1012 cm2 s−1are specified. While the magnetic field in
the initial BMR is 3000 G, it is saturated at 0.1 G to show the weak field at the end.

After substituting the above forms of the fields in Equation (3) and using the
value of E from Equation (7) one can derive the following equations.

∂A

∂t
+

1

s
(vm ·∇)(sA) = ηt

(
∇2 − 1

s2

)
A+ αB, (11)

∂B

∂t
+

1

r

[
∂(rvrB)

∂r
+

∂(vθB)

∂θ

]
= ηt

(
∇2 − 1

s2

)
B+s(Bp ·∇)Ω+

1

r

dηt
dr

∂(rB)

∂r
, (12)

where s = r sin θ and ηt is assumed to depend only on r.
In the above equations, the second term involving vm (or equivalently vr, vθ)

corresponds to advection of poloidal field by meridional flow and the first terms
on the RHS of both equations represent the diffusion. In Equation (11), the term
αB is the source for the poloidal magnetic field. We discuss more about it in the
next section. The term s(Bp ·∇)Ω in Equation (12) is the source for the toroidal
field, in which the nonuniformity of the rotation along the direction of poloidal
field induces a toroidal field (the Ω effect). We note that while deriving above
equations we have neglected a term ϕ̂ · [∇× (αBp)]. This is also a source for the
toroidal field through the α effect. However, in Sun we believe that this term is
negligible compared to the source due to differential rotation. The dynamo model
constructed based on this assumption is traditionally called the αΩ type dynamo
in which the poloidal and toroidal fields maintain each other through a feedback
loop. Finally, the last term in Equation (12) gives rise to an advection due to
nonuniform turbulent diffusion.

4.2 Babcock–Leighton dynamo models

There are two potential and widely studied mechanisms through which the poloidal
field in the Sun can be generated. The first one was proposed by Parker (1955a)
and mathematically studied in detail by Steenbeck et al. (1966). In this process, the
helical convection (which has non-zero net helicity) in the CZ twists the toroidal
field to generate a poloidal component. This is the traditional α effect. We note that
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this process only operates when the energy density of the toroidal magnetic field
is below the energy density of the convective turbulence so that the turbulent flow
can twist the field. The second mechanism goes to Babcock (1961) and Leighton
(1964) who proposed that the decay of tilted bipolar magnetic regions (BMRs)
generates a poloidal field.

Observations show that the line joining the centres of poles of a BMR makes an
angle with respect to the equatorial line. This tilt statistically increases with the
latitude which is known as Joy’s law (Hale et al. 1919). When a BMR decays, the
magnetic field of two poles diffuses at slightly different latitudes. The field from
the leading part predominantly cancels with the field from the other hemisphere
across the equator and the trailing part is largely advected towards the pole to
produce a global dipole moment for the Sun; see Figure 3 and also see Hazra et al.
(2017). This process of generating poloidal field, the so-called Babcock–Leighton
process requires a tilt in the BMR and this process need not be very efficient in
terms of the fact that the magnetic flux in the polar cap is approximately the net
flux content in only one BMR (≈ 5× 1021 Mx; Cameron and Schüssler 2015).

As the BMRs are produced from the deep-seated toroidal field and the decay of
BMRs produces a poloidal field, this mechanism in many Babcock–Leighton type
dynamo models is phenomenologically prescribed by a term αB in Equation (11).
Here, α is nonzero only near the surface in contrast to the (classical) α effect, which
operates in the whole CZ. Although both the α effect and Babcock–Leighton pro-
cess for the generation of the poloidal field are captured by the same term αB

in mean-field dynamo models, their mechanisms are completely different. Never-
theless, in some comprehensive dynamo models, e.g., the 3D model of Yeates and
Muñoz-Jaramillo (2013); Miesch and Dikpati (2014); Kumar et al. (2019); Bekki
and Cameron (2022) and the 2× 2D model of Lemerle and Charbonneau (2017),
do not capture the Babcock–Leighton process through this αB term, instead, they
include explicit BMRs which self-consistently generates the poloidal field. We fur-
ther emphasise that the Babcock–Leighton dynamos are also of mean-field type
although the Babcock–Leighton source term is often introduced in a heuristic way
instead of strictly deriving it from the mean-field MHD.

There was little doubt, at least, after the helioseismology mapped the rota-
tion profile in the CZ (Howe 2009) that the toroidal field in the Sun is produced
through the Ω effect. However, it was not clear whether the helical α effect or
Babcock–Leighton process is the dominating mechanism for the generation of the
poloidal field in the Sun. Most of the early dynamo models considered the α effect.
Then in the 1990s, the studies from the thin flux tube model have shown that the
tilt of the BMR is presumably produced due to the Coriolis force acting on the
rising flux tube of the toroidal field in the CZ (D’Silva and Choudhuri 1993; Fan
et al. 1994). These studies also showed that the magnetic field at the bottom of
the CZ (BCZ) in the BMR forming regions1 has to be of the order of 105 G, which
is much higher than the equipartition field strength (∼ 5 × 103 G; Stix 2002). If
this is the case, then the classical α will not be able to operate in this strong
field. However, the Babcock–Leighton process still can operate in this regime as in
this process, the original toroidal field and the generated poloidal field are segre-
gated in space and there is no generation of magnetic helicity and no catastrophic

1 During the BMR formation, the magnetic field may also be locally amplified from the
diffuse field; see discussion in Getling and Buchnev (2019).
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quenching (Kitchatinov and Olemskoy 2011a). This was a strong support behind
the Babcock–Leighton process as the primary source for the poloidal field in the
Sun.

We would like to recall that there are observational supports for the operation
of the Babcock–Leighton process. First, there is a close connection between the
locations of BMR emergences and the sites of the formations of the trailing po-
larity surges at low latitudes, as seen in the time-latitude distribution (or maybe
in the Carrington maps) of the magnetic field (e.g., Mordvinov et al. 2020, 2022).
Second, the Surface Flux Transport (SFT) models, which describe the evolution of
the radial component of the magnetic field by utilizing the observed BMRs, large-
scale flows (such as differential rotation and meridional circulation) and turbulent
diffusion on the solar surface, capture the Babcock–Leighton process (Wang et al.
1989; Baumann et al. 2004; Upton and Hathaway 2014b; Jiang et al. 2014b). The
remarkable success of the SFT model in terms of reproducing the observed mag-
netic field on the solar surface as well as the coronal structure gives support that at
least the observed magnetic field in the Sun is largely due to the Babcock–Leighton
process. Next, the observed correlation between the polar field (or its proxy) at
the end of the cycle and the amplitude of the next cycle (Wang and Sheeley 2009;
Kitchatinov and Olemskoy 2011b; Muñoz-Jaramillo et al. 2013; Priyal et al. 2014;
Kumar et al. 2021b, 2022) and the flux budgets of the observed and the gener-
ated poloidal and toroidal fields (Cameron and Schüssler 2015) suggest that the
Babcock–Leighton process is possibly the main source of the poloidal field in the
Sun.

4.3 Flux transport dynamo models

While developing a satisfactory dynamo model for the solar cycle in the Babcock–
Leighton framework, modellers faced a challenge to reproduce the observed migra-
tion of sunspots. As the deep-seated toroidal field gives rise to sunspots and the
latitudinal band of sunspots migrates towards the equator within a cycle, we expect
the toroidal field in the deeper CZ to advect towards the equator with the progress
of a cycle. However, to obtain an equatorward propagation through dynamo wave,
Parker-Yoshimura sign rule demands that α∂Ω

∂r < 0 in the northern hemisphere

(Parker 1955a; Yoshimura 1975). The observed profile of Ω shows that ∂Ω
∂r is posi-

tive in the low latitudes where sunspots emerge. Furthermore, the observations of
BMR tilts also suggest that the α corresponding to the Babcock–Leighton process
is also positive in the northern hemisphere. Hence, Parker-Yoshimura sign rule
suggests a poleward migration in contrast to observations. This problem was re-
solved by introducing a meridional flow such that it is equatorward in the deeper
CZ. A sufficiently strong flow can overpower the poleward dynamo wave and can
explain the equatorward migration of the sunspot belt (Wang et al. 1991; Choud-
huri et al. 1995; Durney 1995; Hazra et al. 2014a). While the poleward component
of the meridional flow on the surface has been well-known for many years, recent
helioseismic observations find some indication of the equatorward (return) flow
near the base of CZ (Rajaguru and Antia 2015; Gizon et al. 2020). Also, there is
controversy about the depth of the return flow and the number of cells that exist
in the CZ.
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The dynamo models in which the equatorward migration of the toroidal field
at the BCZ is driven by the meridional flow (or some other flow), rather than
dynamo waves, are popularly known as the flux transport dynamo models (Wang
et al. 1991; Choudhuri et al. 1995; Durney 1995); see Karak et al. (2014a) for a
review on this topic. Usually, the Babcock–Leighton dynamo models (in which the
poloidal source is due to the Babcock–Leighton process) include a meridional flow
to produce the equatorward migration of the toroidal field and thus they are of flux
transport type, however, an αΩ type dynamo can also be of flux transport type if a
sufficiently strong meridional flow is present. Usually, these flux transport dynamo
models, consider a single cell (in each hemisphere) meridional circulation profile
with a return flow of about a few meters per second at a depth of about 0.7R⊙.
Most of the existing Babcock–Leighton type flux transport dynamo models are
kinematic, however, see Rempel (2006); Inceoglu et al. (2017); Bekki and Cameron
(2022) for exceptions.

5 Mechanisms of long-term variations

With the above introduction to the solar dynamo theory, we shall explore how
the irregular variations in the solar cycle can occur. Broadly, we can think of the
following three major causes for these.

– Magnetic feedback on the flow
– Stochastic forcing
– Time delays in various processes of the dynamo

5.1 Magnetic feedback on the flow

We have seen in Section 3 that the flows are essential for the dynamo mechanism.
The large-scale component of velocity, as appearing in Equation (3), is observed
in the form of differential rotation and meridional circulation in the Sun. The
differential rotation induces a strong toroidal field from the poloidal one in the
CZ. The meridional circulation transports the magnetic field near the surface from
low to high latitudes where it pushes the field to the deeper CZ, and it possibly
transports the field towards the equator near the BCZ. Hence, it is natural that
any dynamical change in these large-scale flows can cause variation in the solar
cycle.

In Equation (4), we find several dynamical terms through which modulation in
the flow can arise. First is the mean Lorentz force J ×B, which arises through the
interaction between the mean magnetic and the mean current. This is also called
the Malkus-Proctor effect (Malkus and Proctor 1975). The second is the small-scale
feedback, which consists of two parts. One is the direct small-scale Lorentz forcing
J ′ ×B′ appearing in Equation (4) (through the fluctuating current and magnetic
field). Another is the dynamical modulation in the Λ effect, which comes from the
anisotropic turbulence (appearing through Q in Equation (8)). This modulation
arises because the mean magnetic field also gives rise to the Lorentz force on the
small-scale turbulence (Kitchatinov et al. 1994b). This, so-called micro (small-
scale) feedback, has been captured through a simple quenching in the Λ effect in
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many mean-field dynamo models (Küker et al. 1999). The dynamo-induced small-
scale magnetic field also affects the large-scale flows and the turbulent transport;
see Equations (4, 7, 8) and Käpylä (2019).

Next, the magnetic field gives feedback on the dynamo coefficients. The mag-
netic field dependence of the α coefficient is popularly studied in the literature
(Pouquet et al. 1976; Field and Blackman 2002; Subramanian and Brandenburg
2004). While we do not have an analytical theory for the magnetic field dependence
of the dynamo coefficients from the first principle, Ruediger and Kichatinov (1993)
and Kitchatinov et al. (1994a) respectively gave the dependences of the α and η

on the magnetic field using the quasi-linear and quasi-isotropic turbulence. Based
on this theory, when the magnetic field is much larger than the equipartition field
strength, the α falls as 1/B3, while many kinematic dynamo models tradition-
ally use a quenching factor 1/

(
1 + (B/Beq)

2
)
with Beq being the equipartition

field. MHD turbulent (Käpylä and Brandenburg 2009; Karak et al. 2014b) and
global convection simulations (Racine et al. 2011; Simard et al. 2016; Warnecke
et al. 2018) also do show some magnetic quenching in α. Whatever be the exact
magnetic field-dependent form of α, in all these results one thing is clear: as the
magnetic field tries to grow, it suppresses α and this in turn reduces the generation
of the magnetic field. Hence, the nonlinearity in α tries to make the cycle regular,
rather than producing irregularity in the cycle, provided the strength of α is not
much higher than the critical α.

The feedback on the small-scale turbulence can also be seen in the modulation
of turbulent viscosity and magnetic diffusivity, which can in turn give some varia-
tion in the magnetic field. However, due to difficulties in computing these turbulent
coefficients, we have limited knowledge on how much cycle modulation can arise
due to magnetic feedback on the turbulent coefficients; anyhow, see the results of
quasi-linear approximation (Kitchatinov et al. 1994a) and the convection simula-
tions cited above. Unlike α quenching, the diffusivity quenching, however, tends to
make the model unstable by increasing the magnetic field when the field strength
is large (Kitchatinov and Olemskoy 2010) and thus unless some other mechanism,
say α quenching is included, the dynamo usually does not produce stable cycle
(Kitchatinov and Olemskoy 2010; Vashishth et al. 2021). The last two references
have also shown that the nonlinearities in α and η produce dynamo hysteresis—
strong oscillatory magnetic field in the subcritical regime if the dynamo is started
with a strong field and decaying solution otherwise if started with a weak field.
This was also confirmed in numerical simulations of turbulent dynamos (Karak
et al. 2015b; Oliveira et al. 2021).

We would like to emphasize that the recent observations of stellar rotation
(Metcalfe et al. 2016) show that the rate of solar rotation is close to the minimum
rate for the onset of the large-scale dynamo (also see Rengarajan 1984). Further-
more, Cameron and Schüssler (2017, 2019) showed that the variability seen in the
cosmogenic isotope for the last 10,000 years is consistent with the results from the
generic normal form model for a noisy and weakly nonlinear limit cycle. Grand
minima are only produced when the dynamo is not highly supercritical and the
Sun and solar-like slowly rotating stars do produce grand minima (Kitchatinov
and Olemskoy 2010; Kumar et al. 2021a; Vashishth et al. 2021, 2023). All these
suggest that the solar dynamo is only slightly supercritical and weakly nonlinear.
Thus, possibly the nonlinear effects are not very important in producing long-term
modulations in the solar cycle.
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Fig. 4 Tilt angles of BMRs computed by “tracking” the MDI line-of-sight magnetograms
covering the Cycle 23 (1996 September–2008 December). Here each BMRs are tracked over
their lifetimes and the tilt and latitude of a BMR are taken by averaging their values over its
time evolution when the flux is more than 60% of its maximum. In (a) solid line guides Joy’s
law: γ = 17.8 sinλ. (b) Shows the tilt distribution (with 5◦ bin size) with fitted Gaussian (solid
line) of µ = 10.1◦ and σ = 18.7◦. The figure is produced using the data presented in Sreedevi
et al. (2023).

5.2 Stochastic forcing

Solar CZ is highly turbulent and the turbulent quantities (appearing in equa-
tions (7) and (8)) are subjected to fluctuations around their means in a time
scale equal to the correlation time of the turbulent convection. As there is a finite
number of convection cells over the longitudes at a given latitude in the Sun, the
fluctuations in the turbulent coefficients are significant compared to their mean
values. Hoyng (1988) argued that the fluctuations in the α effect can be larger
than its mean and thus they can produce variation in the solar cycle (Choudhuri
1992; Hoyng 1993; Ossendrijver et al. 1996). In fact, due to small-scale dynamo,
there are always fluctuations around E (Brandenburg et al. 2008; Brandenburg
and Spiegel 2008). The fluctuations in the angular momentum transport (as pa-
rameterized by the Λ effect; Equation (8)) can also alter the differential rotation
and meridional circulation and thus can produce modulations in the solar cycle
(Rempel 2005; Inceoglu et al. 2017).

Babcock–Leighton process, in which decay and dispersal of tilted BMRs gen-
erate a poloidal field in the Sun, involves some intrinsic fluctuations. The tilts
of BMRs have a considerable amount of scatter around Joy’s law (Howard 1991;
Stenflo and Kosovichev 2012; McClintock et al. 2014; Senthamizh Pavai et al. 2015;
Jha et al. 2020). As seen in Figure 4, the scatter is indeed much larger than the
mean. Also, a large number of BMRs are having opposite tilts (negative in the
northern hemisphere) due to non-Joy and anti-Hale configurations which generate
opposite polarity field. Not only the tilt, but the rate of emergence and flux con-
tent of BMR also have considerable variations around their means. The cumulative
effect of the fluctuations of all these parameters of BMRs can have a large impact
on the polar field or the dipole moment at the end of a cycle which can lead to a
considerable variation in the solar cycle (Nagy et al. 2017). On average, in the Sun,
only a few (new) BMRs per day are produced and thus the short-term variation
in the poloidal field is considerably large. This we can also identify by carefully
observing the magnetic field on the solar surface (Cameron et al. 2013; Jiang et al.
2014a; Mordvinov et al. 2016; Kitchatinov et al. 2018; Karak et al. 2018a; Mord-
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vinov et al. 2022). The variation in the inflows around BMR (Jiang et al. 2010;
Martin-Belda and Cameron 2017; Nagy et al. 2020) and the meridional flow (Bau-
mann et al. 2004; Karak 2010; Upton and Hathaway 2014a) also can change the
amount of poloidal field generated. Like fluctuations in the classical-α, there is a
long list of work which reported the fluctuations in the Babcock–Leighton process
and have utilized these in the dynamo models to reproduce various aspects of
the long-term modulation of the solar cycle (e.g., Charbonneau and Dikpati 2000;
Charbonneau et al. 2004; Charbonneau 2005a; Charbonneau et al. 2007; Choud-
huri and Karak 2009; Karak and Choudhuri 2011; Choudhuri and Karak 2012;
Olemskoy and Kitchatinov 2013; Passos et al. 2014; Lemerle and Charbonneau
2017; Karak and Miesch 2017; Nagy et al. 2017).

5.3 Time delay in various processes of the dynamo

Time delays are involved in various processes of the dynamo action. Yoshimura
(1978) argued that the adjustment of the velocity field due to the back reaction
of the dynamo-generated magnetic field is not instantaneous and involves a bit
of delay—at low Prandtl number, the fluctuations in the large-scale flow lag be-
hind the Lorentz force. Furthermore, the modification of the thermodynamics due
to magnetic feedback alters the velocity field and this involves again a time de-
lay. Yoshimura (1978) showed that a time delay in the dynamo model produces
a long-term modulation with occasional ceased activity. In the Babcock–Leighton
dynamo framework, some time delays are unavoidable because the sources for the
poloidal and toroidal fields are spatially segregated. The poloidal field from the
surface layer has to be transported down to the deeper CZ to be sheared by the
differential rotation, thus there involves a long time lag between the poloidal to
the toroidal field. This lag is comparable to the solar cycle. Similarly the toroidal
to the poloidal field conversion process also involves a time lag as the toroidal field
needs to rise to the surface to form BMRs and then BMRs decay to give rise to
the poloidal field. This delay however is short compared to the solar cycle length
as the BMR eruption takes a few days to month and the decay takes another few
months. While these two lags are captured by default in the numerical dynamo
models of Babcock–Leighton and interface (in cases where the regions of shear
and α effect are spatially segregated MacGregor and Charbonneau 1997) types, a
time delay is included by hand in the iterative map and the time delay dynamo
models (Sec. 5.4 of Charbonneau 2010). This time delay in the nonlinear dynamo
model produces a variety of cycle modulations, including Gnevyshev–Ohl rule and
intermittent cycles like the grand minima in certain parameter regimes (Durney
2000; Charbonneau 2001; Wilmot-Smith et al. 2006; Charbonneau et al. 2007).
While in most of the Babcock–Leighton models, the toroidal to poloidal process is
assumed to be instantaneous, Jouve et al. (2010); Fournier et al. (2018) included
a short delay in their model and made it magnetic field dependent regarding the
fact that the flux tube with a strong magnetic field rises fast due to high magnetic
buoyancy. This magnetic field-dependent time delay during the flux emergence in
their flux transport dynamo with nonlinear α effect can produce some modulation
in the cycle amplitude. We here note that time delays in all these models produce
cycle variability only when the nonlinearity becomes important; it is the nonlin-
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earity which is essential to produce cycle modulation. Thus, the time delay alone
cannot produce a variability in the solar cycle.

With these basic discussions of the causes of the modulation of the solar cycle,
we are now ready to discuss some illustrative models for the long-term variation
in the solar cycle.

6 Mean-field models for long-term cycle variabilities

6.1 Models with nonlinear feedback on the large-scale flows

As discussed in Section 5.1, the large-scale flows are subject to change dynami-
cally due to direct Lorentz feedback on the flow (Malkus and Proctor 1975) or
through the feedback on the angular momentum transport (like Λ effect; Kitchati-
nov et al. (1994b)). Extensive research has been done on this topic to capture the
Lorentz feedback of the dynamo-generated magnetic field (Spiegel 1977; Tavakol
1978; Ruzmaikin 1981). Particularly, using a simplified dynamo model Küker et al.
(1999) showed that a modification of the differential rotation by the large-scale
Lorentz force produces strong modulation in the magnetic cycle including grand
minima (also see Moss and Brooke 2000). However, when the α quenching is added,
the modulation is drastically suppressed (which is expected as the α quenching
tends to limit the growth of the magnetic field). Some amount of cycle modula-
tion and grand minima are again recovered if a strong Λ quenching is included in
this model; also see Kitchatinov et al. (1999) for a similar study. In a somewhat
improved dynamo model but by including only the feedback of the large-scale
magnetic field on the differential rotation, Bushby (2006) find some modulation
in the magnetic cycle including grand minima like phases. Chaotic solutions are
also produced in the highly truncated dynamo model (Weiss et al. 1984) which
produces modulation in the cycle.

Basically, in all these models, the modulations happen in two ways (Knobloch
et al. 1998). In one, the large-scale magnetic field of one parity (dipolar or quadrupole)
drives velocity perturbations and energy is exchanged between the magnetic field
and the flow. In this case, a large variation in the flow velocity is observed with
no change in the parity. In the second case, there exists a nonlinear interaction
between the dipole and quadrupole modes, mediated via the velocity perturbation
which is driven by the Lorentz force. This modulation is associated with changes
in the parity with almost no change in the velocity (Thelen 2000). These two
mechanisms of cycle modulation in the literature are referred as Type II and I,
respectively (e.g., Tobias 1997; Knobloch et al. 1998). Based on a nonlinear exten-
sion of the Parker (1993) model, Beer et al. (1998) showed that the latter type of
modulation is the cause of Maunder-like grand minima. In Figure 5, we see that
during the grand minimum the parity of the magnetic field is changed. Based on
a highly idealized simple model of the nonlinear dynamo equations, Weiss and
Tobias (2016) and Beer et al. (2018) showed that the long time-scale ‘supermod-
ulation’ apparent in the cosmogenic isotope data can be ascribed to switching
of the dynamo between two different modulational patterns i.e., from dipole or
quadrupole symmetry to mixed-mode solutions.

Nevertheless, these models are still preliminary and fail to produce many de-
tailed features of the observed magnetic field and the large-scale flows, particularly
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Fig. 5 Butterfly diagrams from Beer et al. (1998), showing the toroidal field at a fixed radius
as a function of time and latitude. In (a) the parity is interrupted by the occurrence of a
grand minimum. The dynamo recovers from the grand minimum with a strong hemispheric
asymmetry. (b) The grand minimum triggers a flip from a dipolar to quadrupolar parity. Figure
reproduced with permission from author.

the correct amount of variation in the differential rotation. Furthermore, in some
studies, the amount of feedback on the differential rotation and meridional circu-
lation are tuned.

6.1.1 Variation in differential rotation

Observations find almost no variation in the differential rotation (Gilman and
Howard 1984; Jha et al. 2021) except a tiny one (< 0.5%) around the mean,
which is known as the torsional oscillation (Howe 2009). Early dynamo models
tried to explain torsional oscillation using the variation of Reynolds stresses due
to dynamo-generated magnetic field (Kueker et al. 1996). Some other models tried
to explain it using the mean Lorentz force of the dynamo-generated magnetic
field on the momentum equation (Schuessler 1981; Chakraborty et al. 2009); see
Pipin and Kosovichev (2019) who included both magnetic feedbacks on the tur-
bulent angular momentum transport and the large-scale Lorentz force. In spite of
that, none of these models could successfully explain both the equatorward and
poleward branches of the torsional oscillation. A comprehensive model of Rempel
(2006) showed that an enhanced surface cooling of the active region belt as pro-
posed by Spruit (2003), in addition to the Lorentz forcing, is needed to explain
the equatorward branch of torsional oscillation. This model expectedly finds al-
most no long-term modulation in the magnetic cycle due to this tiny variation in
the differential rotation. Thus, we may expect that the observed tiny change in
the differential rotation may not be a potential cause of the long-term modula-
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tion in the solar cycle. However, a series of mean-field dynamo calculations have
demonstrated that a variety of cycle modulations including grand minima can be
produced due to the nonlinear back reaction of the magnetic field on the large-
scale flow through the so-called Type I modulation, which leaves a little imprint
in the differential rotation (e.g., Beer et al. 1998; Knobloch et al. 1998; Bushby
2006; Weiss and Tobias 2016). Therefore, it is subtle to answer how much is the
role of the tiny variation in differential rotation in producing cycle irregularity.

6.1.2 Variation in meridional circulation

The meridional circulation is also subject to vary due to the Lorentz forcing of
the dynamo-generated magnetic field acting directly on it or through the alter-
ation of the differential rotation. Models including the magnetic feedback often
find a cyclic variation in the meridional flow (Rempel 2006; Passos et al. 2012;
Hazra and Choudhuri 2017), in agreement with some observations (Hathaway and
Rightmire 2010). Inflows around active regions also cause a cyclic perturbation
in the meridional flow (Gizon and Rempel 2008; González Hernández et al. 2008,
2010). This cyclic change in the meridional circulation with no overall modulation
cannot produce much variation in the magnetic cycle (Karak and Choudhuri 2012).
However, when the amount of perturbation in meridional flow varies with the solar
cycle strength, it can cause a significant modulation in the solar cycle (Jiang et al.
2010). Observations find some temporal variations in the meridional circulation
(González Hernández et al. 2006), although there is no consensus on its long-term
trend due to limited data. If the steady-state meridional circulation is maintained
by a slight imbalance between two large terms—the non-conservative part of the
centrifugal force and the baroclinic forcing (which arises due to a latitudinal tem-
perature difference), a slight change in the balance can produce a large variation
in the meridional circulation (Kitchatinov and Rüdiger 1999). In fact, the global
convection simulations do find a tiny variation in the differential rotation but a
considerable variation in the meridional circulation (Karak et al. 2015a; Passos
et al. 2017), somewhat consistent with the available observations. By assimilating
the synthetic magnetic proxies in the variational data assimilation method based
on flux transport dynamo model, Hung et al. (2015, 2017) also find a time-varying
meridional circulation.

In the models, particularly in the flux transport dynamo models, the variation
in the meridional circulation has been found to produce a profound effect on the
solar cycle. In these models, the meridional flow regulates the cycle duration,
weaker flow makes the cycle longer and vice versa (Dikpati and Charbonneau
1999). The meridional circulation has also an effect on the cycle strength, however,
the effect depends on the diffusivity used in the model. If the dynamo operates
in the diffusion-dominated regime (relative importance of the diffusion is more
with respect to the advection due to flow), then a weaker flow allows the poloidal
magnetic field to diffuse for a longer time and thus makes the magnetic field weak
(Yeates et al. 2008). The opposite scenario happens when the flow is strong. Using
this idea, Karak (2010) discovered that if we want to match the cycle duration
by adjusting the speed of the meridional flow, then the cycle amplitudes are also
matched up to some extent. Thus a significant part of the variation of the solar
cycle can easily be modelled simply by varying the speed of the meridional flow.
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Fig. 6 Figure showing that a sufficient drop in the meridional flow can trigger a Maunder-like
grand minimum. (a) Shows the required meridional circulation speed in m s−1 (solid/dashed
for north/south). (b) Shows the location of the sunspots from the dynamo model; see Karak
(2010) for details.

Karak (2010) also showed that a sudden weakening of the meridional flow can
trigger a Maunder-like grand minimum as shown in Figure 6.

Although the results from some of the flux transport dynamo models with
variation in the meridional flow are very promising, in terms of modelling long-
term variations in the solar cycle, it remains to be answered whether there was any
large variation in the meridional flow in the past, particularly during the Maunder
minimum.

6.1.3 Joint models with multiple nonlinearities

A few mean-field dynamo models were developed by considering full MHD equa-
tions with multiple possible nonlinearities (Brandenburg et al. 1989, 1991; Barker
and Moss 1994; Thelen 2000; Jennings 1993; Muhli et al. 1995; Rempel 2006; Pipin
and Kosovichev 2019; Sraibman and Minotti 2019). Most of these models included
α quenching and Lorentz force feedback (in some form) in the momentum equa-
tion. The aim of these models was mostly to study the nonlinear stability and the
operation of the dynamo. These models do not produce a considerable long-term
modulation and grand minima unless some stochastic fluctuations in the dynamo
parameter are included (Inceoglu et al. 2017). This will be discussed in the later
sections.

6.2 Models with fluctuations

As discussed in Section 5.2, stochastic fluctuations in the solar dynamo is un-
avoidable and thus using these fluctuations numerous dynamo models have been
constructed to explain the variable solar cycle.

6.2.1 Fluctuations in α effect

There is a long history studying the modulation of the solar cycle utilizing the
stochastic fluctuations in the dynamo model. Choudhuri (1992); Hoyng (1993);
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Fig. 7 A representative case of the solar cycle (as measured by the toroidal field) from a
simplified αΩ dynamo model with stochastic noise in the α effect. Credit: Ossendrijver and
Hoyng (1996), reproduced with permission © ESO.

Ossendrijver and Hoyng (1996); Ossendrijver et al. (1996); Gómez and Mininni
(2006); Brandenburg and Spiegel (2008); Moss et al. (2008) are some examples
from a long list of publications in which stochastic fluctuations in the α parameter
in their dynamo model were included and found long-term modulations including
quiescent period like grand minima in some parameter regimes. We would like to
mention that most of these models also include some nonlinearities, usually the
α quenching to stabilize the dynamo. Therefore, it was found that when this α

quenching was included, the variability was decreased. In Figure 7, we present
cycles from a simplified mean-field αΩ dynamo model of Ossendrijver and Hoyng
(1996) with stochastic fluctuations in the α term. They showed that with a certain
amount of fluctuations in α, the variability in the modelled cycle closely resembles
the variability seen in the observed sunspot data.

6.2.2 Fluctuations in α effect coupled with dynamic α effect

When the classical α effect is combined with another α effect having a magnetic
field-dependent lower threshold, a large modulation is expected. The best example
for this is the dynamo model coupled with the dynamic α-effect which is produced
due to the instability in the flux tube at the BCZ (Schmitt 1985; Chatterjee
et al. 2011). In a mean-field dynamo model, Schmitt et al. (1996) included this
dynamic α effect in the overshoot layer below the CZ in addition to the classical
α effect. As the dynamic α effect works only when the magnetic field is greater
than a threshold field strength, it stops operating when the field falls below this
threshold. Schmitt et al. (1996) and Ossendrijver (2000) showed that when the
magnetic field is strong in a normal cycle, both α operate concurrently. However,
due to stochastic fluctuations, the magnetic field can occasionally fall below the
threshold and the dynamical α stops operating. This caused the magnetic field
to fall drastically—that is the beginning of a grand minimum; see Figure 8. Note
that in this case, the magnetic field can suddenly drop to a considerably lower
value. During this quiescent period, the classical α alone slowly grows the field
and recovers the model from grand minimum.

6.2.3 Fluctuations in Babcock–Leighton process

For about the last two decades, Babcock–Leighton type flux transport dynamo
models have been extensively used to explain the variabilities in the solar cycle. The
first landmark paper in this series came from Charbonneau and Dikpati (2000) who
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Fig. 8 Cycle modulations and grand minima (as measured by the magnetic energy) in the
dynamo model with stochastic fluctuations in the α effect combined with a (threshold field
dependent) dynamic α produced due to the instability in the flux tube at the BCZ. Reproduced
from Schmitt et al. (1996) with permission from author.

Fig. 9 The durations vs the times of their occurrence of the grand minima in the 2D Babcock–
Leighton dynamo model of Choudhuri and Karak (2012).

included stochastic fluctuations in their 2D (axisymmetric) flux transport dynamo
model. For this, they added a stochastic term with a coherence time of a month in
the α parameter, the Babcock–Leighton source term in their axisymmetric model.
They essentially replaced α by [1 + s σ(t)]α in Equation (11), where σ is random
deviate within [−1, 1] whose value is updated every month and s determines the
level of fluctuations. They found some modulation in the solar cycle, including the
observed weak anti-correlation between the cycle duration and the amplitude with
200% fluctuations (s = 1) in α. Later Charbonneau et al. (2007) showed that the
long time delay inbuilt in this type of Babcock–Leighton dynamo model naturally
reproduces a Gnevyshev–Ohl like pattern in the modelled solar cycle (more in
Sections 6.4 and 8.3). Fluctuations in the Babcock–Leighton process can also lead
to a large variation in the poloidal field with occasional dips in the polar field (as
observed in the solar magnetic field), which can lead to double peaks (Gnevyshev
gaps) and spikes in the following cycle (Karak et al. 2018a). Large fluctuations in
the Babcock–Leighton process also lead to Maunder-like grand minimum as shown
initially by Charbonneau et al. (2004) and later by many other authors (Choudhuri
and Karak 2009; Passos et al. 2012; Hazra et al. 2014b; Passos et al. 2014) in
different Babcock–Leighton type dynamo models. In particular, Choudhuri and
Karak (2012) estimated the amount of variation in the polar field at the end of
a cycle (a cumulative effect of the fluctuations in the Babcock–Leighton process)
and the variation in the meridional circulation based on indirect observations and
included those into their high diffusivity dynamo model. They found the correct
frequency of the grand minima in the last 11,000 years (Figure 9). Another work
was by Olemskoy and Kitchatinov (2013) who also made an estimate of the level
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Fig. 10 (a) A proxy of the smoothed sunspot number from the dynamo model of Olemskoy
and Kitchatinov (2013). Blue and red shaded regions correspond to the grand minima and
maxima (using the same definition as used in Usoskin et al. 2007). (b) Toroidal field as a
function of latitude and time, highlighting a grand minimum. Reproduced from Olemskoy and
Kitchatinov (2013) with permission.

of fluctuations in the Babcock–Leighton process by computing the contribution to
the polar field from the sunspot group data of Royal Greenwich, Kodaikanal and
Mount Wilson Observatories. They found that the statistic of grand minima are
consistent with the Poisson random process, which indicates that the initiation of
grand minima is independent of the history of the past minima (also see Karak
and Choudhuri 2013). They also showed that there is a correlation between the
occurrence of grand minima and the deviation from the dipolar parity and thus the
hemispheric asymmetry; also see Nagy et al. (2017); Hazra and Nandy (2019) for
the same conclusion from different Babcock–Leighton models. Figure 10(a) shows
the smoothed (in the same way as done in Usoskin et al. 2007) sunspot number
from an 11000-year long simulation done by Olemskoy and Kitchatinov (2013) in
which the red and blue shaded areas represent the grand maxima and minima,
respectively.

The hemispheric asymmetry which is a robust feature during grand minima
is also reflected in a typical grand minimum as presented in Figure 10(b). The
fluctuations in the Babcock–Leighton process of north and south hemispheres are
uncorrelated and thus hemispheric asymmetry is unavoidable during grand minima
in this model and also other dynamo models with fluctuations in the Babcock–
Leighton process (Passos et al. 2014; Karak and Miesch 2018). The hemispheric
asymmetry, however, cannot remain for multiple cycles as the diffusive coupling
at the equator tends to smooth out the asymmetry acquired due to fluctuations
(Chatterjee and Choudhuri 2006; Karak and Miesch 2017). Another way that
north-south asymmetry in the magnetic field can come about in these models is due
to the random excitation of the quadrupolar mode by the stochastic fluctuations
in the Babcock–Leighton process (Schüssler and Cameron 2018).
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Further support for the stochastic origin of the long-term modulation of the
solar cycle came from Cameron and Schüssler (2017) who studied the following
‘stochastic’ normal form model.

dX =
(
β + iω0 − (γr + iγi)|X|2

)
Xdt+ σXdWc = 0, (13)

where X is a complex quantity whose real and imaginary components give the
toroidal and poloidal fields, β determines the growth rate of the dynamo and thus
the supercriticality, ω0 sets the magnetic cycle frequency, γr and γi regulate the
nonlinearity of the model and determine the cycle amplitude, Wc represents a
complex Wiener process and σ is a measure of added noise. The values of all these
parameters are fixed by the observations. Cameron and Schüssler (2017) showed
that in the weakly nonlinear regime, the variability of the solar cycle as seen in the
reconstructed data over the past 9000 years can be modelled using this stochastic
normal-form model (Cameron and Schüssler 2019). They have also tested this idea
using a 1D Babcock–Leighton type dynamo model constrained by observations.

While most of the Babcock–Leighton models are kinematic (see Bekki and
Cameron 2022, for an exception to this), recently Inceoglu et al. (2017) utilized
the 2D nonkinematic dynamo model of Rempel (2006) to study the nature of the
grand minima and maxima. In this work, they considered random fluctuations
in the angular momentum transport process in addition to the Babcock–Leighton
term. This caused some nonlinear interaction between the flow and the fields. Even
in this model, they found that the occurrences of grand minima and maxima are
largely described by memoryless processes. In this model, it is also expected to
observe modulation in the flow. They found that the radial differential rotation
tends to be larger during grand maxima, while it is smaller during grand minima.
The latitudinal differential rotation, on the other hand, is found to be larger during
grand minima in agreement with the data by Ribes and Nesme-Ribes (1993). The
meridional circulation speed tends to be faster during grand minima.

Recently, two comprehensive kinematic Babcock–Leighton dynamo models,
namely, 2 × 2D model (Lemerle and Charbonneau 2017; Nagy et al. 2017) and
3D model (Miesch and Teweldebirhan 2016; Karak and Miesch 2017) were used
to model the cycle modulations. The good thing about these models is that the
BMRs are explicitly deposited in these models and thus all the observed (statisti-
cal) properties of the BMRs are captured by and large. Lemerle and Charbonneau
(2017); Karak and Miesch (2017) showed that the randomness associated with the
BMR production are the major causes for the long-term modulation in the solar
cycle. Both these groups included the observed scatter around Joy’s law tilt (us-
ing a Gaussian distribution) and found considerable amount of variation, including
north-south asymmetry and grand minima in the solar cycle (Figures 11 and 12).
As the level of fluctuations is increased, the variability and the number of grand
minima is increased (Figure 12). We note that the observed distribution in the
delay time of the BMR eruption and the BMR flux also give some modulation in
the solar cycle as seen in Figure 12(a) in which there is no scatter imposed around
Joy’s law.

6.2.4 Does the Babcock–Leighton process operate during grand minima?

Dynamo models including only the Babcock–Leighton process for the poloidal
source is so successful in reproducing the observed features of the solar cycle, it is
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Fig. 11 Time series of the monthly BMR number (pseudo-SSN) from the simulation with
observed tilt scatter of the 2×2D kinematic Babcock–Leighton model (Lemerle and Charbon-
neau 2017). Panels are obtained from two different realizations of dynamo simulations at same
parameters.

Fig. 12 Time series of the monthly BMR number from a 3D kinematic Babcock–Leighton
dynamo model (a) without tilt scatter, (b) with a Gaussian scatter of σδ = 15◦ (close to
the observed value), and (c) σδ = 30◦, respectively taken from Runs B9, B10, and B11 of
Karak and Miesch (2017). The horizontal line shows the mean of peaks of the monthly group
numbers obtained for last 13 observed solar cycles. Arrows in (c) represent the locations of
grand minima.

natural to ask the question whether the Babcock–Leighton process operates during
grand minima.

To operate the Babcock–Leighton process, we need “tilted” BMR. However,
observations, particularly the early ones, found only a few spots during the Maun-
der minimum. Thus, one would expect that the Babcock–Leighton process will not
operate, or be inefficient during the Maunder minimum and possibly during other
grand minima. The classical (helical) α (Parker 1955a) which efficiently operates in
the sub-equipartition field is a obvious candidate for the generation of the poloidal
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Fig. 13 Grand minima reproduced from 2D flux transport dynamo model with additional
α effect operating in the bulk of the CZ (Passos et al. 2014). Colour shows the toroidal field
at the BCZ and the contours show the areas where the field exceeds the threshold for the
model-spot eruptions. Note that in this model, the recovery from the grand minimum is due
to the α effect; see also Ölçek et al. (2019). Image reproduced with permission from authors.

field during these episodes (Karak and Choudhuri 2013; Hazra et al. 2014b). Pas-
sos et al. (2014) performed simulations of 2D Babcock–Leighton dynamo model
with a weak classical α operating in the whole CZ. They showed that this addi-
tional α produces poloidal field and recovers the model from grand minima when
the Babcock–Leighton process stops operating (Figure 13); also see Ölçek et al.
(2019) for another beautiful demonstration of this idea in 2D×2D model with ex-
plicit BMR deposition. Unlike most of the Babcock–Leighton dynamo models2,
in these models, the Babcock–Leighton process is stopped operating at low field
regime by introducing a lower threshold and thus only helical α operates during
grand minima. The mechanism of this type of dual dynamo model is similar to the
model of Ossendrijver and Hoyng (1996) in which a classical α and the dynamical
α driven by the magnetic buoyancy were incorporated (Section 6.2.2).

In any rotating convective layer (like the solar CZ), generation of α effect is
natural. However, its nature and how strong its value in the CZ is still uncertain.
Thus introducing this α in the model, brings several unknown parameters. On the
other hand, the following facts support the operation of Babcock–Leighton process
during Maunder minimum and other grand minima. (i) Maunder minimum was not
completely devoid of sunspots. Recent analyses clearly show that some spots were
observed during the Maunder minimum (Zolotova and Ponyavin 2015; Usoskin
et al. 2015; Vaquero et al. 2015; Zolotova and Ponyavin 2016). (ii) Even a few
BMRs can produce an appreciable amount of poloidal field which, if not decayed
considerably, can slowly produce enough toroidal field and recover the Sun from
grand minima phase. In fact, Cameron et al. (2012) showed that in the Sun the
diffusion of the poloidal field through the surface is negligible—this in the flux
transport dynamo models can be achieved by including a downward magnetic
pumping (Karak and Cameron 2016). (iii) Smaller BMRs (including ephemeral
regions) produce little contrast in the white light and were not detectable as spots
with the telescopes of the Maunder minimum epoch (Jha et al. 2020) but their
eruption rate is large (smaller the BMR, larger is the emergence rate; Hagenaar
et al. 2003). These small BMRs have some non-zero tilt and they can produce

2 Even the models of grand minima by Karak (2010); Choudhuri and Karak (2012); Karak
and Choudhuri (2013) using the Surya code (Chatterjee et al. 2004) although includes a lower
threshold for the spot eruption, the Babcock–Leighton process still operates in these models
because some toroidal field rises to the upper layer due to upward meridional flow and diffusion.
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Fig. 14 (a) Decadal-binned and smoothed BMR number from the model of Karak and Miesch
(2018) with randomness in the BMR properties (mainly scatter around Joy’s law tilt). (b)
Shows the zoomed-in portion of the monthly smoothed BMR number.

Fig. 15 Evolution of the (a) surface radial field (b) BMR eruptions and the hemispheric parity
of the toroidal field (dashed line) and (c) the toroidal field at BCZ from a grand minimum
presented in Figure 14(b) (marked by dashed lines); also see Karak and Miesch (2018).

some polar field during grand minima (Stenflo and Kosovichev 2012; Tlatov et al.
2013; Jha et al. 2020).

By including a downward magnetic pumping, Karak and Miesch (2018) showed
that the model with stochastic properties (tilt scatter) in BMRs can recover from
grand minima without any additional source for the generation of the poloidal field;
see Figure 14. They found that during grand minima as the poloidal magnetic field
does not decay (due to pumping), it keeps on supplying the toroidal field and thus
the model continues to produce BMR at a low rate even during grand minima
(Figure 15). The poloidal field generated from these few BMRs is alone sufficient
to recover the model to the normal phase. Their model reproduces most of the
features of the grand minima (including frequency of grand minima, longer cycles
and strong hemispheric asymmetry during grand minima).

6.2.5 Variability vs dynamo supercriticality

Whenever there is any change in the dynamo number D (= α0∆ΩR3
⊙/η20 , where

α0 is the strength of α effect, ∆Ω is the amount of shear in the CZ, and η0 is the
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Fig. 16 A Hopf bifurcation diagram, showing the transition from a fixed point to dynamo
instability. This is a typical variation of the magnetic field strength (|B|) vs dynamo number
(D) in dynamo model with any nonlinear quenching mechanism as long as D is not much
larger than Dc. Here, Dc is the critical D. δ|Bc| and δ|Bs| are the amplitude variations of the
magnetic field for a given change in D in two different regimes of the dynamo.

diffusivity), there will be a change in the amplitude of the magnetic field. Thus,
the cycle modulation due to fluctuations in the dynamo parameter is obvious.
However, for a given level of fluctuations and the form of nonlinearity, the amount
of variability depends on the value of D or the regime operation of the dynamo.
This is apparently seen in Figure 16 that the same amount of variation in D causes
a large variation in magnetic field when the dynamo operates near the critical
transition (δ|Bc|) and a small variation when the dynamo operates in supercritical
regime (δ|Bs|) 3. The reason for this is not difficult to understand. When the
dynamo operates near the critical transition, a small D makes the growth rate
of the magnetic field small and the dynamo weakly nonlinear. Now consider a
scenario when the magnetic field has become weak due to a reduction of D (or α0)
and after some time due to fluctuations, D has increased. Then the dynamo will
(almost linearly) amplify the field for a long time before the nonlinearity becomes
important and thus the net growth of the field will be large. On the other hand,
if the dynamo operates in a highly supercritical regime, then the nonlinearity will
quickly suppress the dynamo growth and the net amplification of the field will be
small.

The above discussion also means that in the near-critical (or weakly super-
critical) regime, we expect long-term modulation in the cycle and extended grand
minima. In this regime when the field becomes weak due to fluctuations, the dy-
namo will take a long time (several cycles) to grow the field and this will tend to
produce a smooth long-term variation. In contrast, in the super-critical regime, we
do not expect much long-term modulation in the cycle amplitude and no extended
grand minima because when the magnetic field falls to a low value, the dynamo
will quickly increase the field in a cycle. This is clearly seen in Figure 17; also see
Vashishth et al. (2021); Tripathi et al. (2021); Albert et al. (2021). Furthermore,
for the given diffusive and advective transports, the long-term memory of the field

3 Another way to understand this result is from the dynamo instability. In a slightly super-
critical regime, the amplitude B of magnetic cycles follows a general rule B ∝ (D−Dc)1/2 for
all instabilities (Landau and Lifshitz 1987). Thus, δB/δD decreases with the supercriticality.
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Fig. 17 Polar field (averaged over 55◦ latitude to north pole) from a dynamo simulation in
which the dynamo operates (a) near-critical or weakly-supercritical regime (D/Dc = 2) and
(b) supercritical regime (D/Dc = 6). (c) and (d) are showing the cycles for 400 years from
the long data shown in (a) and (b), respectively. The red portions represent extended weaker
activity (the grand minima). The figures are produced from the model presented in Kumar
et al. (2021a).

should depend on the supercriticality of the dynamo. Kumar et al. (2021a) showed
that in the weakly supercritical dynamo, the long-term memory of the polar field
persists for multiple cycles. However, when the supercriticality is increased, the
multi-cycle memory is reduced to only one cycle. In fact, for rapidly rotating young
stars, we expect the dynamo to be strong (convective motion is more helical) and
thus we do not expect extended grand minima there (Vashishth 2022; Vashishth
et al. 2023). This is congruous with the stellar observations that the grand minima
are detected only in the slowly rotating stars (Boro Saikia et al. 2018; Oláh et al.
2016; Shah et al. 2018; Garg et al. 2019; Baum et al. 2022).

The above discussion, although seems to be promising, has a subtlety. In the
highly supercritical regime, when the dynamo number is increased to a very high
value, the variability of the magnetic field may not remain small because the dy-
namo may enter into a more complex regime. In this regime, dynamo modes with
different base periods can emerge and in turn the linear superposition and nonlin-
ear coupling of different modes is expected to introduce an increasingly strong and
complex modulation of the periodic behaviour (Charbonneau et al. 2007; Schüssler
and Cameron 2018; Albert et al. 2021). In addition, even without the presence of
other modes and other base periodicities, the iterative map of Charbonneau (2001)
and the flux transport dynamo model inbuilt with a time delay and nonlinearity
(Charbonneau et al. 2005) enter into chaotic solution through sequence of period-
doubling bifurcations. However, we must remember that to enter the dynamo into
this region, the D must be much larger than Dc; see e.g., Fig. 3 of Charbonneau
et al. (2005); also see the discussion given at the end of Section 5.1. Further-
more, we find that Babcock–Leighton dynamos with the popular α-quenching of
the form: 1/[1 + (B/B0)

2] does not lead to chaotic solution; the solution remains
stable all the way to a very large value of D.

It remains a big question that what is the supercriticality of the Sun. Stellar
observations indicate that probably our Sun is not too supercritical (Metcalfe et al.
2016; Kitchatinov and Nepomnyashchikh 2017). Furthermore, as only the weakly
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supercritical dynamo produces grand minima (Vashishth et al. 2021; Kumar et al.
2021a; Cameron and Schüssler 2017) and somewhat smooth cycle variation and
Sun does produce grand minima, we expect that the solar dynamo is probably not
operating in highly supercritical regime.

6.3 Specific nonlinearities in the Babcock–Leighton process

In the Babcock–Leighton solar dynamo also, the magnetic field acts on the flow
and gives a nonlinearity in the model. However, given the fact that the observed
differential rotation has only a little variation over the solar cycle, the poloidal to
toroidal field conversion, i.e., the Ω effect, is largely linear. On the other hand, the
toroidal to poloidal part of the Babcock–Leighton models is not due to the clas-
sical α effect which experiences a catastrophic quenching due to magnetic helicity
conservation (Sec. 8.7 of Brandenburg and Subramanian 2005), rather it is due
to the Babcock–Leighton process. The latter is a nonlocal process and does not
experience catastrophic quenching (Kitchatinov and Olemskoy 2011a). However,
due to a lack of understanding in the past, most of the Babcock–Leighton dynamo
models included a simple quenching of the form 1/

(
1 + (B/B0)

2
)
in the poloidal

field term to limit the growth of magnetic field (Charbonneau 2010). Fortunately,
in recent years some potential candidates for nonlinearity have been identified
which we discuss below.

– Tilt quenching

The tilt angle of BMR plays a crucial role in generating the poloidal field in
the Sun. Theory based on the thin flux tube approximation suggests that the tilt
is produced due to the torque induced by the Coriolis force acting on the east-west
flow emerging from the apex of the rising flux tube of toroidal field (D’Silva and
Choudhuri 1993; Fan et al. 1994, also see Sec. 5 of Fan (2021)). If a flux tube
has a strong magnetic field, then there will be two consequences. One is that the
flux tube will rise quickly due to strong magnetic buoyancy and thus the Coriolis
force will not get much time to induce the tilt. The other consequence is that the
flux tube will have strong magnetic tension which will oppose the torque. Both
of these effects will reduce the tilt. Based on this theoretical concept, we expect
the tilt to decrease with the magnetic field in the BMR forming flux tube. This,
the so-called tilt quenching may be a potential source for the nonlinearity in the
Babcock–Leighton type dynamo models.

The observational support for the tilt quenching however is limited. Dasi-
Espuig et al. (2010) have found an anti-correlation between the cycle amplitude
and the cycle-average tilt angle of the sunspot group normalized by the mean
latitude from the white-light data of Mount Wilson and Kodaikanal Solar Obser-
vatories (also see Dasi-Espuig et al. 2013, for the corrected plot for Mount Wilson
data). However, other studies do not find a statistically significant relationship for
this (e.g., Wang et al. 2015). Also, studies have shown that the tilt angle measured
from the white light data can be significantly different than that obtained from
the magnetic field data (Poisson et al. 2020). Jiao et al. (2021) carefully exam-
ined the previous methods of estimating tilt angles from Kodaikanal and Mount
Wilson, supplemented by tilt angles from Debrecen Photoheliographic data and
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Fig. 18 (a) Tilt coefficient as computed from the mean tilt normalized by the mean latitude
vs the sunspot cycle amplitude (Jiao et al. 2021); also see Dasi-Espuig et al. (2010). (b) Slope
of Joy’s law as a function of the maximum field strength of the BMR (Jha et al. 2020).

show that the tilt is statistically anti-correlated with the cycle strength as shown
in Figure 18(a).

While the above studies explored the variation of the cycle-average tilt with
the cycle strength, Jha et al. (2020) examined the tilt of BMR within the cycle
from the line-of-sight magnetograms of Michelson Doppler Imager (MDI onboard
Heliospheric Observatory (SOHO); 2010–2018) and Helioseismic and Magnetic Im-
ager (HMI onboard Solar Dynamic Observatory (SDO); during 1996–2011). They
showed that the BMR tilt has non-monotonous dependence on the BMR’s field
strength; in the small field regime, the tilt increases and in the large field regime
it decreases. This is shown in Figure 18(b). We note that in this study, the data
were used from Cycles 23 and 24 which are weak cycles and for these very little
reduction of tilt was seen in the study of Jiao et al. (2021). Therefore, the limited
data used in Jha et al. (2020) could not predict the exact magnetic field-dependent
form of the BMR tilt.

– Flux loss due to magnetic buoyancy

Magnetic buoyancy is the key for the formation of sunspots or more generally
BMRs (Parker 1955b). Models under thin flux tube approximation showed that
when a portion of the toroidal flux tube with sufficient field strength at the BCZ
becomes magnetically buoyant, it rises to surface to give rise to a BMR. In this
process, the portion of the flux tube from where the flux is depleted becomes
inefficient for flux eruption for some time. As the flux emergence happens only
when the field strength exceeds a certain value and after each flux emergence
the flux is reduced locally, this introduces a nonlinearity in the dynamo. This
nonlinear loss of toroidal flux plays an important role in limiting the growth of the
magnetic field in the Sun (Schmitt and Schuessler 1989; Nandy and Choudhuri
2000; Chatterjee et al. 2004). Studies have shown that dynamo models including
magnetic buoyancy reproduces observations better (Schmitt and Schuessler 1989;
Hazra et al. 2015).

By introducing the magnetic buoyancy in a simple way, Biswas et al. (2022)
explained the observed latitudinal variation of the solar activity over the cycle as
shown in Waldmeier (1955); Cameron and Schüssler (2016) also see Figure 19 (a-
b). Let us explain how the flux loss helped to explain the observed feature. In the
Babcock–Leighton dynamo model, the poloidal magnetic field largely produces a
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Fig. 19 The trajectory of the cycles when plotted in terms of annual sunspot number (a,c)
and full width at half maximum (FWHM) of the latitudinal distribution (b,d) against the
central latitude of the annual distribution. (a,b) From observations (Cameron and Schüssler
2016) (with permission from authors). (c,d) From dynamo simulation with buoyancy-induced
toroidal flux loss (Biswas et al. 2022). The plots show that the beginning phases (right part of
the curves) of the cycles are widely different depending on their strength yet the decline phase
are quite similar irrespective of their strength. Also see Talafha et al. (2022) for modeling these
features using a different model.

toroidal field in the higher latitudes of the deeper CZ and then this toroidal field
is advected towards the lower latitudes. During its journey, when the toroidal field
exceeds a certain value Bc (the threshold for BMR eruption), it starts producing
BMRs at higher latitudes. As the Ω effect keeps on producing the toroidal field, the
activity grows while the toroidal flux is advected towards the equator. Now consider
a cycle becomes strong. The strong cycle starts producing BMRs at high latitudes
and the activity (number of BMR) rises rapidly (strong cycles rise rapidly). Rapid
growth means the toroidal flux loss occurs at a faster rate. Quickly the magnetic
field at BCZ becomes comparable to Bc and the activity does not grow further.
Any further generation of the magnetic field will then be compensated by the flux
loss due to BMR emergence and the cycle decline at the same rate for all cycles;
Figure 19 (c-d). That is why in strong cycles the activity begins to decline when
the activity belt is already at higher latitudes.

We would also like to mention that without invoking the flux loss due to mag-
netic buoyancy, only the cross-equatorial diffusion was used to explain this univer-
sal decline of the solar activity in different studies (Cameron and Schüssler 2016;
Talafha et al. 2022).

– Latitudinal quenching



Models for the long-term variations of solar activity 31

The observational facts presented in Figure 19(a-b) also suggest that strong
cycles on average produce BMRs at high latitudes and vice versa (also see Wald-
meier 1955; Solanki et al. 2008; Mandal et al. 2017). On the other hand, we know
that when BMRs appear at higher latitudes, they are less efficient in generating a
poloidal field due to poor cross-equatorial cancellation (Jiang et al. 2014a; Karak
and Miesch 2018; Petrovay et al. 2020). In contrast, when BMRs appear near the
equator, it becomes easier for the leading polarities to cancel with the flux of the
opposite polarity from the other hemisphere. Now consider a cycle that has be-
come strong in which the BMRs appear in high latitudes. These high latitudes
BMRs will produce less poloidal field and the next cycle will be weak. Hence,
the indefinite growth of the magnetic field will be halted. Petrovay (2020) called
this mechanism latitude quenching and Jiang (2020) argued that this mechanism
could stabilize the growth of the magnetic field in the kinematic dynamo. Karak
(2020) implemented this idea in a 3D Babcock–Leighton dynamo model by taking
a simple latitude-dependent threshold for BMR eruption and showed that this lat-
itudinal quenching can regulate the growth of the magnetic field when the dynamo
is not too supercritical.

– Magnetic field-dependent inflows around BMRs

Surface observations show a converging flows around the BMRs (Gizon et al. 2001;
González Hernández et al. 2008). These inflows cumulatively generates mean flows
around the activity belt whose strength depends on the amount of flux in the
cycle (Jiang et al. 2010; Cameron and Schüssler 2012). Due to these flows, the
cross-equatorial cancellations of the BMRs are reduced and the effectivity of the
Babcock–Leighton process is suppressed. In a strong cycle, this effect is stronger
and thus lead to a stabilizing effect in the dynamo (Martin-Belda and Cameron
2017; Nagy et al. 2020).

In summary, tilt quenching, flux loss due to magnetic buoyancy, latitudinal
quenching and inflows are the potential candidates for the nonlinearity in the
toroidal to the poloidal process of the Babcock–Leighton dynamo which can po-
tentially saturate the magnetic field.

6.4 Time delay models

As discussed in Section 5.3, the time delay involved in various processes in the
solar dynamo, operating concurrently with the nonlinearity can lead to irregular
cycles. Yoshimura (1978) introduced a long delay of 29 years in the nonlinear
dynamo model and found occasional eras of suppressed activity. Although such a
long delay is not expected in the solar dynamo, a finite delay arises naturally in
any dynamo model as long as the sources for the poloidal and toroidal fields are
spatially segregated. In the Babcock–Leighton dynamo models, the poloidal field
after it is produced near the surface through the decay of tilted BMRs needs to be
transported to the deeper CZ (through meridional circulation, turbulent diffusion
and pumping) where the toroidal field is generated through the Ω effect. There
is also a short time delay between the toroidal and poloidal field conversion as
the toroidal flux tubes take finite time to rise to the surface to form BMR and a
finite time is spend to decay and disperse the BMR. All these two delays in the
nonlinear dynamo model can produce a variety of modulations.
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6.4.1 Iterative map

Durney (2000) assumed that there is a delay of one cycle between the poloidal
field of cycle n and the toroidal field of cycle n + 1 and brilliantly reduced the
Babcock–Leighton dynamo equations into a iterative map. He writes,

Tn+1 = ∆Ω∆tPn = aPn, n = 0, 1, 2, ... (14)

(Here ∆Ω is the shear in the CZ and ∆t is the time interval during which the
poloidal field acts on the shear.) Neglecting the time delay in the toroidal to
poloidal fields conversion, we can write the following nonlinear relation:

Pn+1 = f(Tn+1)Tn+1 (15)

Here f(Tn+1) is a measure of the efficiency of the poloidal field generation from
the toroidal field (Babcock–Leighton process) which depends on the toroidal field.
Substituting Equation (14) into (15) and normalizing the fields appropriately, we
find

pn+1 = af(pn)pn (16)

(where normalizing factors are absorbed in a). For different nonlinear functions
(f) of the Babcock–Leighton process, different maps can be constructed. Durney
(2000) chose it 1 + β(1− pn) and thus the map became

pn+1 = pn (1 + β(1− pn)) β > 0. (17)

Charbonneau (2001) chose it γ(1− pn)pn which produced a map

pn+1 = γ p2n(1− pn) γ > 0. (18)

By capturing a lower cut off in the Babcock–Leighton process, Charbonneau et al.
(2005) produced another map

pn+1 = αf(pn)pn α > 0, (19)

where

f(pn) =
1

4

[
1 + erf

(
pn − p1

w1

)] [
1− erf

(
pn − p2

w2

)]
(20)

(Here p1 = 0.6, w1 = 0.2 p2 = 1.0, and w1 = 0.8.)
Charbonneau (2001); Charbonneau et al. (2005) showed that as the map pa-

rameter increases, the transition from the fixed amplitude oscillation to the chaotic
solution occurs through a sequence of period doubling; see left panel of Figure 20
for the map given by Equation (19). Durney (2000) showed that in the param-
eter regime of the doubly periodic oscillations, the Gnevyshev–Ohl rule can be
explained. Later Charbonneau (2001) showed that this is indeed not necessary,
stochastic perturbation outside this region can also produce Gnevyshev–Ohl rule
as a consequence of the oscillatory nature of the convergence to the fixed point;
even the map without showing limit cycle for 1/(1 + B2) type nonlinearity also
show Gnevyshev–Ohl rule. Intermittent and chaotic solutions are produced in all
these maps, as long as the map parameter is above a certain value; also see Fig. 5
of Charbonneau (2001) for an illustration.
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Fig. 20 Bifurcation diagrams. (a) Cycle amplitude (iterate Pn) vs the map parameter α
from Equation (19). (b) Same as left one but obtained from 2D numerical dynamo model of
Charbonneau et al. (2005) and shows the magnetic energy as function of the dynamo number
Cs. Figures are reproduced from Charbonneau et al. (2005) with permission from authors,
copyright by the American Astronomical Society.

6.4.2 1D time delay dynamo

Finite delays are also included in the 1D dynamo models in which the equations for
the toroidal and poloidal fields are truncated by removing the spatial dependences
in the following way.

dB

dt
=

ω

L
A(t− T0)−

B

τd
(21)

dA

dt
= α0f(B(t− T1))B(t− T1)−

A

τd
. (22)

Here, T0 and T1 represent the time delays required for the generation of toroidal
and poloidal fields, respectively. ω and L are the contrast in differential rotation
and the length scale in the tachocline, τd is the diffusion time scale, α0 is the ampli-
tude of the Babcock–Leighton source. f(B(t−T1)) is the nonlinear function which
represents the suppression of the Babcock–Leighton mechanism. By considering
f(B(t− T1)) of the from of Equation (20) (with lower quenching), Wilmot-Smith
et al. (2006) found irregular cycles in a certain parameter regime (when the time
delay is larger than the diffusion time). Later, including fluctuations in the α0

term, Hazra et al. (2014b); Kumar et al. (2021a); Tripathi et al. (2021) obtained
long-term modulations and grand minima like intermittent solutions in a range of
parameters.

6.4.3 2D time delay dynamo

In models like the Babcock–Leighton type flux transport and the interface dy-
namos, in which the source regions for the fields are spatially segregated, the time
delays are by default inbuilt into the equations. Thus all the Babcock–Leighton
dynamo models discussed in this review are also time delay models. Charbonneau
et al. (2005) showed that the 2D Babcock–Leighton dynamo models also show



34 Bidya Binay Karak

Fig. 21 Cycle modulations (as measured by the toroidal field at r = 0.7R⊙ and θ = 20◦) in
the flux transport dynamo model of Jouve et al. (2010) with magnetic field-dependent delay
in the Babcock–Leighton source for the poloidal field generation process (Equation (23)). The
Left and right panels are for short (14 days on 1 kG fields) and long delay (14 days on 50 kG
fields so that 10 kG fields will be delayed by almost a year in this case compared to a few
hours in the previous case). Image reproduced with permission from authors.

the same type of behaviour as seen in the reduced map. Figure 20(b), shows the
bifurcation diagram of a 2D Babcock–Leighton dynamo model with a nonlinear
quenching function of the form given by Equation (20). Again, with this type
of nonlinearity, we observe that the solution goes to a chaotic regime through a
sequence of period doubling with the increase of dynamo number. The model is
capable to produce Gnevyshev–Ohl rule in a wide range of parameter regimes with
stochastically forced α (Charbonneau et al. 2007); more in Section 8.3.

Jouve et al. (2010) went one step ahead of this and included the short time
delay associated with the flux emergence from the deep-seated toroidal flux that is
usually ignored in the dynamo models. They realized the fact that the buoyancy
time delay depends on the magnetic field strength—strong flux tubes experience
strong buoyancy and thus rise quickly compared to the weaker ones (Fan et al.
1994). Jouve et al. (2010) captured this delay in their flux transport dynamo model
by replacing the poloidal source term: αB in Equation (11) by

αB(0.7R⊙, θ, t− τB)

1 + (B(0.7R⊙, θ, t− τB)/B0)
2
, (23)

where τB is the delay time which they took to be equal to τ0/B(0.7R⊙, θ, t)2 and
τ0 is used to regulate the amount of delay. Figure 21 shows the results from two
simulations with different amounts of delay as presented by Jouve et al. (2010). We
evidently see that just the addition of this delay in the poloidal source produces
a considerable amount of modulation in the cycle and the amount of modulation
increases with the increase of delay (also see Fournier et al. 2018).

However, we note that in these models, the flux loss due to magnetic buoyancy
is ignored (Section 6.3). The flux loss tries to keep the magnetic field around the
equipartition value. In that case, the toroidal flux tube will not have much different
field strength from one another and the delay times will not be very different.
Hence, if the flux loss due to magnetic buoyancy is incorporated in these models
then we do not expect much modulation in the cycle. Biswas et al. (2022) included
flux loss due to magnetic buoyancy in the dynamo model with local α prescription
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Fig. 22 Cycles from the global MHD convection simulations using EULAG-MHD code. Re-
produced from Passos and Charbonneau (2014) with permission from authors.

and they did not find noticeable modulation in the cycle due to field-dependent
delay with respect to the case without delay.

7 MHD simulations for long-term cycle variabilities

In the MHD simulations one needs to solve the following continuity equation for
the mass and the energy equation in addition to equations (1) and (2).

∂ρ

∂t
+∇ · (ρv) = 0, (24)

T
[
∂s

∂t
+ (v ·∇)s

]
=

1

ρ

[
ηµ0J

2 −∇ · (Frad + FSGS)− Fcool

]
+ 2νS2, (25)

where ρ is the density, ν is the kinematic viscosity, Frad is the radiative diffusive
flux and is given by −K∇T , K being the heat conductivity, FSGS represents the
additional subgrid scale (SGS) diffusion which is used to keep the simulation nu-
merically stable (usually taken as −χSGSρT∇s′ with χSGS being the SGS diffusion
coefficient and s′ is the fluctuations of entropy), and Fcool is the radiative cooling
near the surface. These equations are numerically solved using appropriate initial
and boundary conditions to study the dynamo problem; see for example Käpylä
et al. (2020) for the detailed profiles of all the model parameters and the boundary
conditions.

In the last one decade, global MHD convection simulations have reached to a
somewhat realistic level (not in terms of the Reynolds numbers but in terms of the
level of turbulence and the realistic value of Rossby number). They produced some
basic features of the large-scale flows and the magnetic field. We refer the readers
to Section 6 of Charbonneau (2020) for a review on this subject. An advantage of
these simulations is that all the nonlinear and stochastic effects are included by
default in these simulations, in contrast to the mean-field models where these ef-
fects need to be included by hand. However, due to limited computation facilities,
global convection simulations were rarely run for a longer time so that a long-term
cycle modulations can be studied. Furthermore, being extremely complicated in
nature, identifying the mechanisms of the long-term modulations are not trivial.
Fan and Fang (2014); Karak et al. (2015a); Viviani et al. (2018, 2019) presented
some simulations which were run for a somewhat longer duration. Here we discuss
three important results for the cycle modulations gleaned from three different nu-
merical codes. The first one is from Passos and Charbonneau (2014) who presented
cycles from a simulation run of 1650 years in which 40 excellent cycles with aver-
age period of 40 years were seen (Figure 22). This simulation ‘broadly’ reproduces
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Fig. 23 Left top: Time-latitude distributions of the longitude average Br and Bϕ at 0.92R⊙
from the ASH simulation code of Augustson et al. (2015). The grand minimum identified in
this simulation is marked by vertical lines. Right panel shows the parity of the magnetic field
computed at 0.75R⊙ (orange curve) and 0.95R⊙ (black). Figure reproduced with permission
from authors, copyright by AAS.

some observed features of the solar magnetic cycle including the regular polar-
ity reversal and dipole-dominated large-scale field. Interestingly a good amount of
modulation in the cycle amplitude is naturally produced in this simulations. There
is also a pattern for the Gnevyshev-Ohl rule (watch the peaks after t = 800 yr)
and a hint for the Gleissberg modulation in these cycles. However, in this 1650
years of simulations no grand minimum or maximum is seen. With respect to the
solar observations, there are some discrepancies as well which include an in-phase
variation of the poloidal and toroidal components, magnetic activity confined to
high latitudes, and the low degree of hemispheric coupling.

The second important result came from Augustson et al. (2015) utilizing the
3D MHD ASH code which is shown in Figure 23. This is from a model of one solar
mass rotating at three times the Sun. Again this simulation produces many features
that are consistent with observation and the important one is the equatorward
migration of the toroidal field belt at low latitudes which is caused by the nonlinear
modulation of the differential rotation. The interesting feature in their simulation
is that a clear grand minimum was identified with a considerably reduced magnetic
field for about five cycles. However during this minimum, the large-scale field failed
to reverse, although its amplitude oscillated cyclically. The grand minimum in this
simulation is possibly caused by the interplay between the symmetric and anti-
symmetric dynamo families. During the regular cycle, the anti-symmetric dynamo
family is greater than the symmetric family but during grand minimum phase,
the symmetric family dominates over the anti-symmetric one; see the right panel
of Figure 23 for the increased parity of the radial field at two different depths.
The mechanism for the generation of the grand minimum in this simulation is
similar to the one proposed by Tobias (1997); Moss and Brooke (2000) based on
the nonlinear mean-field dynamo model.

The final one is from Käpylä et al. (2016) utilizing the Pencil Code. They per-
formed this simulation for a model of one solar mass rotating at five times the Sun.
This simulation also produced some solar-like features, including regular polarity
reversals and an equatorward migration of the toroidal field at low latitudes (due
to a nonlinear dynamo wave). In addition to the dominant global magnetic cycle of
an average period of 4.9 years, there are two other prominent cycles, one having a
higher frequency mode near the surface and at low latitudes with poleward migra-
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Fig. 24 Temporal variation of the mean Br average over the longitudes on the surface from
global convection simulation using Pencil Code (Käpylä et al. 2016). The color scale is saturated
at the half of the extrema i.e., at [−11.7, 10.4] kG. Note the disturbed magnetic activity during
t = 20–45 years.

tion, and the other one having low frequency residing at the BCZ. Their simulation
also finds an episode of reduced magnetic field for about three cycles, happening
asynchronously in hemispheres (t = 20–45 years). Interestingly, the magnetic field
in the deeper CZ is stronger during this period and thus the global magnetic field
during this period is larger than during the normal phase. The dynamics of the
magnetic fields in this simulation are extremely complex and the grand episode of
the reduced activity is caused through the interplay of various dynamo modes.

Although the global convection simulations produce some long-term modula-
tions in the cycles and the grand minimum-like reduced activity which are consis-
tent with solar observations, there are few caveats that we should keep in mind.
The cycle modulations observed in the above convection simulations are many
ways far from the actual Sun. The large-scale flows produced in these simulations
are also quite far from the real Sun. Importantly, the power in the sub-surface
convective flow at large scales are much stronger than that is obtained from the
measurements, so-called the convective conundrum (Hanasoge et al. (2012); Lord
et al. (2014); also see e.g., Hotta et al. (2015); Karak et al. (2018b) for the stud-
ies that attempt to resolve this.) Furthermore, we do not have any information
about whether these long-term modulations found in the convection simulations
are robust in the model parameter regimes. Finally, the simulations do not produce
BMRs which are important component of the solar cycle and are responsible for
the generation of the poloidal field in the Sun, at least the field that is observed on
the surface. Therefore, future work is needed to make the global convection sim-
ulations more realistic so that they can be utilized to study the long-term cycle
modulation.

Ideal MHD simulations in the local box are also performed to study the large-
scale dynamos. With helical forcing and imposed shear, Karak et al. (2015b) per-
formed HMD simulations in the local Cartesian geometry and found modulations
in the large-scale magnetic cycle. The interesting fact about their study was that
they found grand minima like intermittent activity only when the dynamo op-
erates in the subcritical and critical regime but not in the supercritical regime.
This independent study thus supports the idea that the variability and the grand
minima are less probable in the supercritical dynamo; see Section 6.2.5 for details.
Local simulations are also useful to study the cycle modulations in presence of the
small-scale dynamo. The small-scale magnetic field generated from the small-scale
dynamo affects the flows and thus the global dynamo (Karak and Brandenburg
2016). Global dynamos are usually performed at low Reynolds numbers and thus
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Fig. 25 Probability distribution function of the reconstructed sunspot number (filled grey
curve) and the observed group sunspot number (red curve). Blue is the bi-Gaussian curve.
Figure is modified after Usoskin et al. (2014); also see Wu et al. (2018) for the distribution
from longer data.

small-scale dynamo is not excited, except a few (e.g., Nelson et al. 2013; Käpylä
et al. 2017; Hotta and Kusano 2021), however, they are not ran for many cycles.

8 Some open questions and current trends

8.1 Do grand minima represent different states of the solar dynamo?

By analyzing the solar activity data for the past, Usoskin et al. (2014) showed
that the distribution of the solar activity is bi-modal. Of this, the dominant mode
corresponds to the regular activity phase and the reduced-activity mode which
corresponds to the grand minima is distinct from the dominant regular one. As
seen from Figure 25, the distribution is clearly bimodal.

In terms of the dynamo theory, of course, the physics during grand minima is
not quite the same as that during the regular cycle. For example, during the grand
minima phases, the magnetic field falls to a low value and then the Sun takes some
time to grow its magnetic field to the normal level. During these grand minima
phases, the generation of the poloidal field is low because the Babcock–Leighton
process which is the dominant source for the poloidal field in the Sun becomes less
efficient due to fewer BMRs (Section 6.2.4). The strength and morphology of the
flow can also be different during this phase. Therefore, the Babcock–Leighton dy-
namo models coupled with weak α effect and/or the dynamo models coupled with
the dynamic α effect produced by the instability of flux tube (discussed in Sec-
tion 6.2.2) can naturally explain the bimodal distribution. The dominant source
of the poloidal field (Babcock–Leighton process or dynamic α effect) maintains
the normal mode of the solar activity while the grand minima phase is maintained
by the weak α effect. Time delay models or the iterative map with low-amplitude
additive noise and fluctuating map parameter/dynamo number with specific non-
linearity can also naturally produce the bimodal distribution of solar activity; see
Figure 1 of Charbonneau (2001) and Tripathi et al. (2021). Also, see Petrovay
(2007) for a possible explanation of a bimodal solar dynamo based on an interface
dynamo model coupled with a fast tachocline model. Karak et al. (2015b) using
3D simulations of turbulent dynamo suggested that the bimodal distribution of
solar activity can be produced in the subcritical dynamo.
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8.2 Do grand maxima require different mechanisms for their origin?

In most of the previous studies, the origin of the grand maxima is ignored. However,
the mechanism for its generation is subtle because the dynamo is more nonlinear
during the grand maxima phase. When the Sun tries to produce a strong mag-
netic field, the nonlinearity tries to quench its generation process (efficiencies of
both the poloidal and toroidal field generations are reduced with magnetic field).
Incidentally, the Sun spent less time in the grand maxima phase than in the grand
minima phase (Usoskin et al. 2007; Solanki et al. 2004). Thus, producing extended
grand maxima using the stochastic fluctuations in the dynamo parameters is less
obvious. However, stochastic fluctuations still can produce a very strong magnetic
cycles and grand maxima if they occur in a certain phase of the cycle. Kitchatinov
and Olemskoy (2016) showed that at the beginning of a cycle (when the field at
the poles is strongest) if the generation of the poloidal field is reversed (say due
to the emergence of some wrongly tilted BMRs), then it will produce the same
polarity field as it was there in the pole. Consequently, instead of reversing the old
polarity polar field, it will amplify. This strong polar field will make the current
cycle very strong. By introducing stochastic fluctuations in a 2D flux transport
dynamo model, Kitchatinov and Olemskoy (2016) showed that this mechanism
can occasionally produce a much stronger cycle which corresponds to the grand
maxima phase. However, in this mechanism, not more than one strong cycle at
a time is produced, while in the solar grand maximum, at least two consecutive
cycles are strong (Usoskin et al. 2007). Also, this study is based on a kinematic
model, in which the nonlinear feedback of the magnetic field on the flow is ignored.

Another way of generating the grand maxima is through the combined effect
of multiple poloidal field generation processes. Ölçek et al. (2019) find that when
the deep-seated α effect is coupled with the surface Babcock–Leighton process
in a dynamo model, these two processes more or less contribute equally to the
generation of the poloidal field through a sort of constructive interference. This
could be the mechanism of grand maxima in their dynamo model. However again
this model is kinematic and the magnetic feedback is not taken care of.

8.3 What is the origin of Gnevyshev-Ohl/Even-Odd rule?

One plausible explanation for the Gnevyshev-Ohl rule is the fossil field hypothesis.
A steady large-scale magnetic field of fossil origin (Boruta 1996) can interfere with
the oscillating magnetic field from the CZ. In one cycle the oscillating magnetic
field appears in the same polarity as that of the fossil field and it makes the cycle
strong. In the next cycle, the oscillating magnetic field becomes of opposite polarity
and thus the cycle becomes weak. To explain the Even-Odd rule using this idea,
the fossil field has to be comparable to the dynamo-generated oscillating magnetic
field at the BCZ which is of the order of 10 kG. However, the present observations
do not confirm this strong fossil field. Furthermore, if the Gnevyshev–Ohl rule is
caused by the fossil field, then there should be infinite memory in it, in a sense that
once this rule is established, odd (even) cycles will always be stronger than the
previous even (odd) cycles, even if there are some violations due to other effects.
However, studies show that there was a possible reversal in the even-odd pattern
during 1745–1850 (Mursula et al. 2001; Tlatov 2013; Zolotova and Ponyavin 2015).
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There is another possible explanation for the Gnevyshev-Ohl rule which was
proposed by Durney (2000) using the nonlinear period-doubling effect. He sug-
gested that the solar dynamo is operating in the region of period doubling beyond
the bifurcation point and in this region the alternating amplitude modulation is
unavoidable. Later Charbonneau (2001) showed that this is indeed not essential;
stochastic forcing in the dynamo can lead to Even-Odd effect even outside this
parameter range of period doubling. The time delays (Section 6.4) involved in the
solar dynamo including simple amplitude limiting nonlinearity can produce the
same period-doubling and Gnevyshev-Ohl rule as seen in the complex nonlinear
system (Charbonneau et al. 2007). The dynamo model and map with various types
of nonlinearity show Gnevyshev–Ohl rule under fluctuations in the poloidal source
(α). However, this Gnevyshev–Ohl rule becomes evident only when the nonlinear-
ity becomes important (large map parameter or dynamo number) and it seems
to be little restricted to a narrow range of the diffusivity in the BCZ (Sec 4.5 of
Charbonneau et al. 2005). Thus, there is still room to explore the robustness of
this feature.

8.4 What are the causes of Gleissberg and Suess/de Vries cycles?

Gleissberg and Suess/de Vries cycles are not strictly cycles, rather they are mod-
ulation over the dominant 11-year period and they are detected in the cosmogenic
data having ranges of periods from 90 to 100 years and from 205 to 210 years,
respectively. If these modulations are the true nature of the solar cycle, then they
are probably coming from the nonlinear interaction between the magnetic field and
the flows in the lower part of CZ. In a axisymmetric αΩ dynamo model coupled
with the angular momentum equation and ignoring meridional circulation, Pipin
(1999) showed that the Gleissberg cycle is a results from the magnetic feedback
on the angular momentum fluxes which maintains the differential rotation in the
CZ. In this model, the period of the Gleissberg cycle is determined by the time
associated with the re-establishment of the differential rotation after the magnetic
perturbations of the angular momentum transport. If this is the mechanism of the
Gleissberg cycle in the sun, then the observed differential rotation should show
a variation in the Gleissberg timescale. However, the available observations does
not provide a conclusive evidence on it (Howard 1978). Passos and Charbonneau
(2014) found a hint of Gleissberg modulation in their computed proxy sunspot
number but not in the radial field data and they require data for a longer duration
to confirm its existence. Cameron and Schüssler (2019) showed that Gleissberg and
Suess/de Vries cycles are consistent with realization noise and the noisy normal
form model can reproduce these modulations.

9 Summary and discussion

Besides the 11-year (a)periodic variation of the amplitude, the most prominent
variation of the solar cycle is the long-term modulation which has been unam-
biguously identified in the direct and indirect (cosmogenic data) observations of
the solar activity. Examples of the long-term modulation include the Gnevyshev-
Ohl/Even-Odd rule, grand minima, grand maxima, Gleissberg cycle and Suess
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cycles. In this review, we have presented comprehensive discussions on the ori-
gins and models of long-term variations. To do so, we have broadly identified the
following three major causes for the cycle modulations: (i) magnetic feedback on
the flow, (ii) stochastic forcing, and (iii) time delays in various dynamo processes.
Problems in the nonlinear mean-field models are that not all possible nonlinearities
are always included in the model and the resulting mean flows and magnetic fields
are not compared carefully with observations. Global MHD convection simulations
are very useful in this respect because all nonlinearities are captured by default.
They have begun to produce some correct results of the large-scale field and the
flow, however, there are big discrepancies as well. Until global convection simu-
lations reach somewhat realistic parameter regimes and resolve the major issues
(convective conundrum, observed large-scale flows, nonappearance of BMRs), we
need to rely on the mean-field models only.

Stochastic fluctuations in the mean-field models are enough to explain many
features of the long-term variabilities. The Babcock–Leighton dynamo models are
promising models for the solar cycle, in terms of their success in reproducing the
long-term modulations in the solar cycle. Stochastic fluctuations in these models
are due to randomness in the BMR properties (primarily due to scatter around
Joy’s law, BMR emergence rates and emergence latitudes). Babcock–Leighton
models are also nonlinear because at least the toroidal to poloidal field genera-
tion step includes several essential nonlinearities (tilt quenching, latitude quench-
ing, toroidal flux loss due to magnetic buoyancy). While these nonlinearities have
the tendency of stabilizing the magnetic field, they can lead to fluctuating cycles
including Gnevyshev–Ohl rule and grand minima at highly supercritical regimes
(large dynamo numbers) due to the inherent time delay in the dynamo models with
spatially segregated source regions. Observations indicate that the solar dynamo
is possibly operating in a weakly nonlinear regime (slightly above the dynamo
transition) and thus cycle modulations are caused by stochastic effects.

One way to pick up the correct model out of all the possible models for long-
term modulation is to carefully compare the model results with the observations.
Observational results include the followings (but not limited to). (i) There is a
strong hemispheric asymmetry during the second half of the Maunder Minimum
(Ribes and Nesme-Ribes 1993). (ii) However, the asymmetry during the normal
cycle is less, appears randomly, and is smoothed out in a few cycles (the memory
of the asymmetry does not remain for multiple cycles; Goel and Choudhuri 2009;
McIntosh et al. 2013; Das et al. 2022). (iii) The differential rotation in the whole
CZ of the Sun is well-measured for about last four decades and it has only a tiny
variation (surface differential is measured even for about 200 years and also shows
little variation; Gilman and Howard 1984; Jha et al. 2021).

Grand minima are possibly triggered by the stochastic fluctuations in the dy-
namo parameters or/and the nonlinear interaction of the Lorentz force. The re-
covery to the normal phase from grand minima is trivial in any model which
includes the α effect because it can operate in the weak-field regime. Recovery
through the Babcock–Leighton process is also possible because recent analyses
revealed spots during Maunder minimum and the Babcock–Leighton process can
produce a poloidal field with a few BMRs or smaller BMRs having nonzero tilts
(including ephemeral regions). Grand maxima are probably more special events
and less frequent than grand minima. Again nonlinear modulation of the flow via
Lorentz force and stochastic fluctuations can trigger these events. A dual source
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of poloidal field generation occurring constructively or reversed generation of the
poloidal field due to stochastic fluctuations can produce prominent grand maxima.
Occurrences of grand minima and maxima in the dynamo models can be described
by stochastic processes and these are consistent with the observations. The wait-
ing time distributions of the grand minima and maxima in the dynamo models
are also described by the memoryless stochastic processes, which however disagree
with the available observations.
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Cameron RH, Dasi-Espuig M, Jiang J, Işık E, Schmitt D, Schüssler M (2013) Limits to solar
cycle predictability: Cross-equatorial flux plumes. Astron. Astrophys.557:A141, DOI 10.
1051/0004-6361/201321981, 1308.2827

Chakraborty S, Choudhuri AR, Chatterjee P (2009) Why Does the Sun’s Torsional Oscil-
lation Begin before the Sunspot Cycle? Phys. Rev. Lett.102(4):041102, DOI 10.1103/
PhysRevLett.102.041102, 0907.4842

Charbonneau P (2001) Multiperiodicity, Chaos, and Intermittency in a Reduced Model of the
Solar Cycle. Sol. Phys.199(2):385–404, DOI 10.1023/A:1010387509792

Charbonneau P (2005a) A Maunder Minimum Scenario Based on Cross-Hemispheric Coupling
and Intermittency. Sol. Phys.229(2):345–358, DOI 10.1007/s11207-005-8150-0

Charbonneau P (2005b) Dynamo Models of the Solar Cycle. Living Reviews in Solar Physics
2(1):2, DOI 10.12942/lrsp-2005-2

Charbonneau P (2010) Dynamo Models of the Solar Cycle. Living Rev Sol Phys 7:3, DOI
10.12942/lrsp-2010-3

Charbonneau P (2020) Dynamo models of the solar cycle. Living Reviews in Solar Physics
17(1):4, DOI 10.1007/s41116-020-00025-6

Charbonneau P, Dikpati M (2000) Stochastic Fluctuations in a Babcock-Leighton Model of
the Solar Cycle. Astrophys. J.543:1027–1043, DOI 10.1086/317142

Charbonneau P, Blais-Laurier G, St-Jean C (2004) Intermittency and Phase Persistence in
a Babcock-Leighton Model of the Solar Cycle. Astrophys. J. Lett.616:L183–L186, DOI
10.1086/426897

Charbonneau P, St-Jean C, Zacharias P (2005) Fluctuations in Babcock-Leighton Dynamos.
I. Period Doubling and Transition to Chaos. Astrophys. J.619(1):613–622, DOI 10.1086/
426385

2302.14845
1803.11123
astro-ph/0405052
0710.4059
1503.08469
1210.7644
1604.07340
1705.10746
1205.1136
1308.2827
0907.4842


44 Bidya Binay Karak

Charbonneau P, Beaubien G, St-Jean C (2007) Fluctuations in Babcock-Leighton Dynamos.
II. Revisiting the Gnevyshev-Ohl Rule. Astrophys. J.658(1):657–662, DOI 10.1086/511177

Chatterjee P, Choudhuri AR (2006) On Magnetic Coupling Between the Two Hemispheres in
Solar Dynamo Models. Sol. Phys.239(1-2):29–39, DOI 10.1007/s11207-006-0201-6

Chatterjee P, Nandy D, Choudhuri AR (2004) Full-sphere simulations of a circulation-
dominated solar dynamo: Exploring the parity issue. Astron. Astrophys.427:1019–1030,
DOI 10.1051/0004-6361:20041199, astro-ph/0405027

Chatterjee P, Mitra D, Rheinhardt M, Brandenburg A (2011) Alpha effect due to buoy-
ancy instability of a magnetic layer. Astron. Astrophys.534:A46, DOI 10.1051/0004-6361/
201016108, 1011.1218

Choudhuri AR (1992) Stochastic fluctuations of the solar dynamo. Astron. Astrophys.253:277–
285

Choudhuri AR, Karak BB (2009) A possible explanation of the Maunder minimum from a flux
transport dynamo model. Res Astron Astrophys 9:953–958, DOI 10.1088/1674-4527/9/9/
001, 0907.3106

Choudhuri AR, Karak BB (2012) Origin of Grand Minima in Sunspot Cycles. Phys Rev Lett
109(17):171103

Choudhuri AR, Schüssler M, Dikpati M (1995) The solar dynamo with meridional circulation.
Astron. Astrophys.303:L29

Das R, Ghosh A, Karak BB (2022) Is the hemispheric asymmetry of sunspot cycle caused
by an irregular process with long-term memory? Mon. Not. R. Astron. Soc.551:472, DOI
10.1093/mnras/stac035

Dasi-Espuig M, Solanki SK, Krivova NA, Cameron R, Peñuela T (2010) Sunspot group
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Oláh K, Kővári Z, Petrovay K, Soon W, Baliunas S, Kolláth Z, Vida K (2016) Magnetic cycles

1711.00222
1609.01199
1412.5094
1302.1081
1606.01926
1606.01926
1401.6557
1511.03613
1602.02460
2009.11174
2111.15585
1304.3151
1712.02185
1211.3129


50 Bidya Binay Karak

at different ages of stars. Astron. Astrophys.590:A133, DOI 10.1051/0004-6361/201628479,
1604.06701
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